
Exercise 1 - Changing vision identity (banner)
The banner of your GeoNetwork site can be easily changed by replacing the default graphics
with graphics of your own organization. Objective of this exercise is illustrating the steps to
update site’s vision identity.

To conduct the exercise you will need to perform the following steps:

1. design or select the graphics for the banner
2. copy the graphic files in the required folder
3. update the XSL file generating the banner (banner.xsl) and the CSS document.
4. refresh the home page

The steps in more detail

Step 1. For this exercise, we borrowed graphic files from the Commonwealth Office of
Spatial Data Management banner:
 my-banner-left.gif
 my-banner-back.gif
 my-banner-right.gif
that are located in /exercises/ex02/ folder. In real life, you would design your own banner
and create three parts like below.

Step 2. The default banner consists of three
graphics: a left part, a center part and a right part.

The center part is defined as a background image
of the table the whole banner is assembled in. It is
a graphic that can easily be repeated horizontally
in a seamless way, linking the left and right
graphic. The default graphic is named blue-
stripes.jpg.

The left and right part are named header-
left.gif and header-right.gif respectively.
All banner graphics are 80 pixels high.
You can replace the default graphics with graphics of your own organization, but for now use
the sample ones provided with this exercise. Copy the three files of the new banner in the
web/images/banner/ folder.

Step 3 Open the file banner.xsl in a text editor or an
XML editor. You will find this file in the \web\xsl folder.

The XSL files are responsible for the generation of the
HTML output of GeoNetwork opensource. They operate
on an incoming XML document, taking content from that
XML document and transforming it into HTML output a
web browser can display (render).

You will see the text listed below at the top of the
document.

<xsl:template name="banner">
<table width="100%">
 <!-- title -->
 <tr class="banner">
 <td class="banner">
 <img src="{/root/gui/url}/images/header-left.gif" alt="GeoNetwork
opensource" align="top" />
 </td>
 <td align="right" class="banner">
 <img src="{/root/gui/url}/images/header-right.gif" alt="World
picture" align="top" />
 </td>
 </tr>
 <!-- buttons -->
 <tr class="banner">

Note the highlighted text in red that defines the names and location of the left and right
graphics. Note the highlighted text in green that defines the style used to render the middle
part of the banner.

The {root/gui/url} will be replaced with the base URL of your GeoNetwork opensource
installation; in this case. The rest of the string will point the browser to the appropriate left or
right graphic.

Replace the strings in red (above) with the ones below to match the new files.

 {root/gui/url}/images/banner/my-banner-left.gif

 {root/gui/url}/images/banner/my-banner-right.gif

If you wish, change the alt value with more appropriate information.

Save and close the document.

Now open geonetwork.css file in a text or CSS editor.
The file is located in the \web folder of your
installation. We will have to update the image name of
the graphic used for the middle part of the banner.

Search for the td.banner style in this document and
update the filename accordingly (see below). Then,
save and close the style sheet.

td.banner {

font-size: 8pt;
color: #ffffff;
/* background-image: url('images/blue-stripes.jpg'); old */
background-image: url('images/banner/my-banner-back.gif');
border-bottom: 1px solid #ffffff;

}

Step 4 Open your web browser and refresh the GeoNetwork opensource homepage.

Below is the expected result of updating the banner. Check if your changes are consistent.

Exercise 2 - Changing text
All text that is part of the GeoNetwork opensource user interface is maintained in a set of
XML files. These files can be localized to provide access to the site in several languages.
The exercise shows how to insert a new text string in the home page.

To conduct the exercise you will need to perform the following steps:

1. open strings XML files and add a new element
2. open main-page.xsl and add a new XSL element
3. save updates and refresh the home page

The steps in more detail

Before proceeding with the exercise, some notes
about localization.
To see the localized files, open your file manager
and go to location \web\loc\.

For each available language, you will find a two
letter coded folder (en, es, fr) containing an
images and an xml folders.

Open the strings.xml file (en\xml\) in a text or
XML editor. Strings.xml contains most of the
generic user interface text enclosed in user tags.

The structure of the files is relatively simple. The
file starts with a root element, followed by
elements containing strings. Elements can also
contain HTML code or can contain attributes.
Each element has a logical name, e.g. <admin>, and contains the string to appear in the
user interface. For example the mainpageTitle element
(<mainpageTitle>...</mainpageTitle>) contains the title of the search box in the home
page.

Use the search tool and search for mainpageTitle element to see its content. Also
check out the same element in different languages.

Following is the XSL element that allows the transformation in HTML string of the tag value.

<xsl:value-of select="/root/gui/strings/mainpageTitle"/>

This element is used in main-page.xsl. The figure in the next page shows the output.

Logically, the \en\xml folder should contain XML files with English strings, while the fr folder
should contain the same XML files, but now containing French strings and so on.
Note that the structure of the XML file is very simple.

A nice feature of GeoNetwork opensource is that it has a default language, set to English.
When viewing the website in another language, all strings that are not translated will be
displayed in the default language. This ensures that no text disappears from the GUI.

Step 1. The exercise will now
take you through the steps of
adding a new localized string at
the bottom of the search box of
main-page.xsl like you see in
the figure on the right.

Open strings.xml and add a new element as showed below. Insert the element at the bottom
of the file just above the root element (</strings>).

<workshopText>FOSS4G Conference, Lausanne, 12-15 September
2006</workshopText>

Do it for each language (en, es and fr) and translate the text (translations are in
exercises/ex04/strings.txt file.

Step 2. Open main-
page.xsl and find the
commented section
"Info" in the content
template (see red box on
the right).

Add the next lines after the code above.

<!-- additional text for training -->
<tr><td height="30px"></td></tr>
<tr>
 <td align="right">
 <h3><xsl:value-of select="/root/gui/strings/workshopText" /></h3>
 </td>
</tr>
<!-- END additional text for training -->

Step 3. Save main-page.xsl and refresh the browser window.

The home page should now show the added text at the bottom of the search box. Try
different languages to see how the localization works.

Exercise 03 – Creating an XML export service
for metadata
Creation of a simple new service on GeoNetwork opensource that will export a metadata
record in XML format. The service will use existing functionality from the GeoNetwork
engine, so no Java programming is required. Note: For simplicity, this exercise will focus on
ISO19115 formatted metadata only.

1) Pre-configure the server

 - Open WEB-INF/config.xml
 - Locate <debug>false</debug> and set to true
 - Restart GeoNetwork
 - Type
http://127.0.0.1:8080/geonetwork/srv/en/metadata.show!?id=15&currTab=simple
(notice the "!" after the service name)
 - Notice that the full metadata XML is directly inside of the <root> element. We'll use this to
write the XPath expression to catch the metadata part from the XML output.

2) Create a new service

GeoNetwork services are based on the Jeeves framework. These are defined in the WEB-
INF/config.xml configuration file. We start by copying an existing service and then we'll
modify it as needed:

 - Open the file WEB-INF/config.xml

 - Locate the service metadata.show:

<service name="metadata.show">
 <class name=".services.metadata.Show" />
 <output sheet="metadata-show.xsl">
 <call name="services" class="jeeves.guiservices.services.Get" />
 <call name="currTab" class=".guiservices.util.GetCurrentMDTab" />
 <xml name="isoLang" file="xml/iso-languages.xml" />
 <xml name="sources" file="xml/sources.xml" localized="false" />
 </output>
 <error id="access" sheet="error-form.xsl">
 <xml name="privError" file="xml/privileges-error.xml" />
 </error>
</service>

 - Copy the block and paste it to the end of file, before "</service>", and change as follows
(changes are highlighted in bold):

...
 <service name="metadata.getAsText">
 <class name=".services.metadata.Show" />
 <output sheet="metadata-show.xsl">
 <call name="services" class="jeeves.guiservices.services.Get" />
 <call name="currTab" class=".guiservices.util.GetCurrentMDTab" />
 <xml name="isoLang" file="xml/iso-languages.xml" />
 <xml name="sources" file="xml/sources.xml" localized="false" />
 </output>
 <error id="access" sheet="error-form.xsl">

 <xml name="privError" file="xml/privileges-error.xml" />
 </error>
 </service>
 </services>
 <!--
== -->
</geonet>

3) Set privileges for the new service

Now we have to set the privileges from the service we just created. Services are definited in
the file xml/user-profiles.xml:

 - Open xml/user-profiles.xml

 - Add the following two line before "</profile>"

...
 <!-- Get metadata xml as plain text -->
 <allow service="metadata.getAsText"/>

 </profile>

 <!--
== -->
</profiles>

 - Restart geonetwork

 - Try the metadata.getAsText service:

http://127.0.0.1:8080/geonetwork/srv/en/metadata.getAsText?id=15

 - Not surprisingly the page is the same as metadata.show...

4) Customize the service output

Finally we modify the service definition to return XML as text/plain:

 - Duplicate the stylesheet potal-full.xsl and rename it metadata-get-as-text.xsl

 - Edit the file potal-full.xsl as follows (changes are highlighted in bold):

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

 <xsl:template match="/root">
 <xsl:apply-templates select="/root/Metadata"/>
 </xsl:template>

 <!-- default: just copy -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()[name() !=
'geonet:info']"/>
 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

 - Change the metadata.getAsText service definition as follows:

<service name="metadata.getAsText">
 <class name=".services.metadata.Show" />
 <output sheet="metadata-get-as-text.xsl" contentType="text/plain;
charset=UTF-8" />
</service>

 - Restart geonetwork and try the metadata.getAsText service again:

http://127.0.0.1:8080/geonetwork/srv/en/metadata.getAsText?id=15

If everything went well you should get the metadata XML as plain text...

5) Modify the search result page

 - Modify search-results.xml as follows:

<!-- view button -->
<xsl:if test="$metadata/geonet:info/view='true'">
 <xsl:choose>
 <xsl:when test="$remote=true()">
 <button class="content"
onclick="load('{/root/gui/locService}/remote.show?id={$metadata/geonet:info/id}&currTab=simple
')"><xsl:value-of select="/root/gui/strings/show"/></button>
 </xsl:when>
 <xsl:otherwise>
 <button class="content"
onclick="load('{/root/gui/locService}/metadata.show?id={$metadata/geonet:info/id}&currTab=sim
ple')"><xsl:value-of select="/root/gui/strings/show"/></button>

 <button class="content"
onclick="load('{/root/gui/locService}/services/metadata.getAsText?id={$metadata/geonet:info
/id}')">Metadata XML</button>
 </xsl:otherwise>
 </xsl:choose>
</xsl:if>

 - Open the search results page and test with an ISO19115 metadata record.

