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Data is GROWING!!!

‣ NASA’s SRTM mapped 80% of  the earth at 30 meter 
resolution

• SRTM data set: 300,000 x 300,000 raster
‣ USGS & NASA publicly release terabytes of  data
‣ LIDAR data collection produces extremely large data sets at 

high resolution



DEM Representations
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Raster - TIN Comparison

‣ Fixed Resolution

‣ Implicit Topology 

• Don’t need to store 
adjacency explicitly

‣ Simple algorithms

‣ Large amount of  grid data 
available

‣ Most Commonly Used

‣ Variable resolution

‣ Topology needs to be stored 
explicitly

‣ Algorithms are more 
complex

‣ Data needs to be converted 
into a TIN

‣ Somewhat less popular than 
grids

Rasters TINs



Variable Resolution
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Representing Massive data

‣ With rasters, the same amount of  space is used to represent 
• a mountainous region (Himalayas)
• a flat area (Mohave desert)

‣ Space efficiency becomes more important for massive data!
‣ Increased space efficiency can significantly reduce run time



Scalable raster-to-TIN 
Simplification

‣ raster-to-TIN simplification
• simplify raster to TIN which approximates the raster 

within a user specified error threshold
• intuitively: drop points in the raster that are redundant

‣ Scalable raster to TIN simplification
• efficient when size of  input raster becomes very large



r.refine

‣ Scalable raster-to-TIN simplification module
• Input: raster, error threshold e
• Output: simplified TIN

‣ Based on an I/O efficient algorithm



Outline

‣ [Introduction]
‣ Raster simplification
‣ r.refine
‣ Results

• Scalability
• Space efficiency

‣ Conclusion & Future Work



Raster 
Simplification



Raster Simplification

‣ Problem: 
• Given a raster with 

points P and an error 
ε, find S ∈ P which 
approximates P within 
ε: that is,  every point 
in S is within distance 
ε of P.



Refinement Heuristics

‣ Start with 4 corner pts of 
raster

‣ Repeat:
• Find point with 

largest error
• Add point to 

triangulation
• If  no more points 

with error > ε Then 
break;
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Refinement: Adding Points

‣ If  point not collinear add 3 
triangles

‣ If  collinear add 4 triangles



Delaunay Triangulation

‣ Delaunay is a type of  triangulation which has the property of  
maximal minimum angle. (Triangles are fat)

‣ A triangle is locally Delaunay if  its circum-circle does not contain 
any other points in the triangulation

‣ Delaunay is desirable because it reduces rounding errors and has 
shown to reduce triangles in a TIN

Delaunay Not Delaunay Edge flipping



Scalability

‣ Refinement is not scalable 
‣ Refinement requires random access to data

• If  data-size > mem-size run time is very long
• GRASS segment library does not fix this

‣ Large data-sets necessitate scalability



r.refine
A scalable approach for raster-to-TIN 

simplification



Tiling for I/O-Efficiency

‣ Tiling is a common I/O optimization technique

• Take size of  memory as parameter 
• Separate large grid into tiles
• Each tile is small enough to fit in memory
• Refine each tile individually then write to disk
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Our Refinement

‣ We use the standard refinement 
algorithm  within each tile

‣ We maintain Delaunay 
triangulation while building the 
TIN

refineTinTile(e, tile)
1 pq ← PQ-init()
2 tt ← initTinTile(tile, pq)
3 while s ← PQ-extractMax(pq) and s "= nil
4 do if isCollinear(s)
5 then fixCollinear(s)
6 else t1 ← addTri(s, s.p1, s.p2, s.maxError, tt)
7 t2 ← addTri(s, s.p1, s.maxError, s.p3, tt)
8 t3 ← addTri(s, s.maxError, s.p2, s.p3, tt)
9 distributePoints(t1, t2, t3, s, e, pq, tt)

10 removeTriangle(s)
11 enforceDelaunay(t1, t1.p1, t1.p2, t1.p3, e, tt)
12 enforceDelaunay(t2, t1.p1, t1.p3, t1.p2, e, tt)
13 enforceDelaunay(t3, t1.p2, t1.p3, t1.p1, e, tt)
14 return tt

Figure 3.2: Our Refinement Algorithm

the worst case a triangle may have to distribute k − 1 points. Step 10 takes constant time.

For the final Steps 11-13 each call to enforce delaunay may cause that edge to be flipped,

which is done in constant time. In addition, it may cause a casacding set of edge flips. Note

that if edge e across from vertex v is flipped, the new edge r is incident to v (Figure 2.4

(c), edge ay is incident to a). Similarly, all subsequent cascading of the edges flipped are

incident to v. Thus, even though we cannot bound the number of edges per vertex, overall,

in the final triangulation, the total number of edges is O(r); thus the total number of edge

flips performed by all enforceDelaunay calls is O(k) (Note: this argument is called backward

analysis as in RIC [6]). Since each call to enforceDelaunay also has a hidden call to distribute

points we have an additional O(k) time per edge flip. The total runtime for this algorithm

is thus O(k ∗ log r + k + r ∗ k) = O(r ∗ k).

I/O: Since each tile is stored contiguously on disk, it takes r
B I/Os to read one tile

into memory. Since a tile fits entirely in memory no other I/Os are needed and the entire

refinement takes O( r
B ) I/Os.
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TIN Structure

‣ Two structures:
• Triangles

• Vertices

• Triangles store:
    – Pointer to adjacent triangles
    – Pointer to vertices
    – List of  points inside

• Points store:
    – Location (x,y,z)
• TIN is accessed through lower 
left vertex V
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Combining Tiles

Need to combine tiles such that boundary points are consistent

We refine one tile at a time starting with the upper left tile. We 
maintain consistency by adding points to right and bottom 
neighbors.

There is no known way to maintain Delaunay globally and I/
O-efficiently
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Using r.refine



Running r.refine

Figure 6: TIN structure: each triangle stores a pointer to its vertices and the neighbor triangles.

individually. When we add a point to the right or bottom boundary of a tile we add that point
and necessary triangles to the adjacent tile. Since we start by refining the upper left tile and then
continue refining each row of tiles from left to right, we are guaranteed to have a right and bottom
tile neighbor that has not yet been refined.

Figure 7: Tile Boundaries: (a) Inconsistent with point 8. (b) Consistent.

4 Using r.refine

Description:
r.refine: scalable raster-to-TIN simplification.

Usage:
r.refine [-dnr] grid=name [epsilon=value] [tin=name]
[output_sites=name] [output_vect=name] [memory=value]

Flags:
-d Do NOT use Delaunay triangulation
-n Include nodata points (more points, better boundaries)
-r Render TIN in OpenGL

Parameters:
grid Input raster

epsilon Error threshold, in percentage of max elevation

7

default: 1.0
tin Output TIN file

default: output.tin
output_sites Name of output sites file.

default: NULL
output_vect Name of output vector file.

default: NULL
memory Main memory size (in MB)

default: 500

r.refine requires as input a raster name. The default simplification error threshold is 1% of
the range (maximum-min value) of the terrain. By default it creates an output (binary) file that
contains the resulting TIN and its topology; this will be used by (future) modules that will read
the TIN and compute on it. The user can specify a sites file and a vector file in which the resulting
TIN can be saved. The user can set the parameter mem to the amount of main memory to be used
by the program; by default this is set to 500MB.

r.refine has three flags, used mainly for debugging purposes:

• If -d is set, r.refine uses a regular triangulation.It is faster, but creates long ugly triangles.

• If -n is set, the nodata values are included as regular points in the simplification. This causes
the simplified terrain to have more points, but somewhat better boundaries.

• If -r is set the resulting TIN is rendered in OpenGL.

The parameter nodata is specifies whether to include nodata points in the refinement;

Example

GRASS:~/nfs-gis/> r.refine grid=elev eps=3 output_sites=eleve3 output_vect=eleve3
region size is 472 x 391
r.refine grid=elev output=output.tin output-sites=eleve3 outputVect=eleve3
error=3.00 mem=500.00 delaunay=1 no_data=0 render=0
raster2grid: reading raster elev....done
refining
write TIN tile to sites file eleve3
100%
write TIN tile to vect file eleve3
done refining
.......DONE........
err=3.00% absErr=27.48 mem=500.00MB numTiles=1
raster: 184552 points
TIN: triangles=2350 points=1183
total time: 1.70 99.9%
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• Flags
    –d  Don’t use Delaunay
    –n  Include nodata points
    –r   Render

• Parameters
    – Input grid
    – Epsilon (% of  Max Elevation)
    – Output TIN
    – Output sites
    – Output vector
    – Memory (Default 500 MB)



r.refine Output

default: 1.0
tin Output TIN file

default: output.tin
output_sites Name of output sites file.

default: NULL
output_vect Name of output vector file.

default: NULL
memory Main memory size (in MB)

default: 500

r.refine requires as input a raster name. The default simplification error threshold is 1% of
the range (maximum-min value) of the terrain. By default it creates an output (binary) file that
contains the resulting TIN and its topology; this will be used by (future) modules that will read
the TIN and compute on it. The user can specify a sites file and a vector file in which the resulting
TIN can be saved. The user can set the parameter mem to the amount of main memory to be used
by the program; by default this is set to 500MB.

r.refine has three flags, used mainly for debugging purposes:

• If -d is set, r.refine uses a regular triangulation.It is faster, but creates long ugly triangles.

• If -n is set, the nodata values are included as regular points in the simplification. This causes
the simplified terrain to have more points, but somewhat better boundaries.

• If -r is set the resulting TIN is rendered in OpenGL.

The parameter nodata is specifies whether to include nodata points in the refinement;

Example

GRASS:~/nfs-gis/> r.refine grid=elev eps=3 output_sites=eleve3 output_vect=eleve3
region size is 472 x 391
r.refine grid=elev output=output.tin output-sites=eleve3 outputVect=eleve3
error=3.00 mem=500.00 delaunay=1 no_data=0 render=0
raster2grid: reading raster elev....done
refining
write TIN tile to sites file eleve3
100%
write TIN tile to vect file eleve3
done refining
.......DONE........
err=3.00% absErr=27.48 mem=500.00MB numTiles=1
raster: 184552 points
TIN: triangles=2350 points=1183
total time: 1.70 99.9%
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Delaunay Non-Delaunay
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Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.
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Results



Test Platform

‣ Apple Dual Processor G5
‣ 2.5 GHZ CPU
‣ 1 GB RAM
‣ Data Sets from 1.6 million to 122 million points



Tiled vs Untiled Runtime 
Comparison

 0

 200

 400

 600

 800

 1000

 1200

N
u

m
b

er
 o

f 
se

co
n

d
s

kaweah prtoric sierra hawaii appalach cumberla lowerne

Untiled Run Time
Tiled Run Time

Figure 8: Tile vs Untiled Runtime Comparison on Datasets with 1 % Error
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Tiled vs Comparison On 
Appalachians
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Figure 10: Tile vs Untiled Comparison On Appalachians
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Grid vs TIN Point Comparison
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Grid vs TIN Size Comparison

0.1% Error
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Effects of Delaunay On Number of 
Triangles
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Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.
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Conclusions 
&

 Future Work



Future Work

‣ Assure quality of  data. (No artificial dams or ridges)
‣ Apply flow modeling to TINs
‣ Parallelize code
‣ Take sample points (LIDAR) as input



Conclusions

‣ r.refine provides a starting point for work on TINs
‣ We introduce a scalable and practically efficient refinement 

application to GRASS


