
r.refine:
Scalable Raster to TIN

Simplification

Jonathan Todd Laura Toma
 Bowdoin College

FOSS4G 2006
Lausanne, Switzerland

Data is GROWING!!!

‣ NASA’s SRTM mapped 80% of the earth at 30 meter
resolution

• SRTM data set: 300,000 x 300,000 raster
‣ USGS & NASA publicly release terabytes of data
‣ LIDAR data collection produces extremely large data sets at

high resolution

DEM Representations

3

3

3

3

1

1

1
1

1

3 3

3

3

3

3

3

3

3

2

2

2

2

2
2

44

4

4

4

4

5

5

5

1

3

3

5

5

4

2

1

3

2

3

3 5

4

4

2

2

2

2

2

2

2

2

2

1

1

2

2

2

1

1

1

1

2

3

3 3 4

3 4

5

2

3

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

44

5

5

55

TIN

Raster

Contour Lines

Sample Points

Raster - TIN Comparison

‣ Fixed Resolution

‣ Implicit Topology

• Don’t need to store
adjacency explicitly

‣ Simple algorithms

‣ Large amount of grid data
available

‣ Most Commonly Used

‣ Variable resolution

‣ Topology needs to be stored
explicitly

‣ Algorithms are more
complex

‣ Data needs to be converted
into a TIN

‣ Somewhat less popular than
grids

Rasters TINs

Variable Resolution

6ft.

7 ft.

7

7

7

6

7

7

7

7

7

7

6

6

6

6

7

7

7

7

7

6

6

7

7

7

7

7

6

6

6

6

7

7

7

6

6

6

6

6

6

7

7

6

6

6

6

6

6

7

6

6

6

6

6

6

6

7

6

6

6

6

6

6

6

6

7

6

6

6

6

6

6

6

7

6

6

6

6

6

6

6

6

6

6

6
6

6

6

7 7

7 7

Flat Area

Raster - 80 pts

TIN -11 pts, 12 tris

Representing Massive data

‣ With rasters, the same amount of space is used to represent
• a mountainous region (Himalayas)
• a flat area (Mohave desert)

‣ Space efficiency becomes more important for massive data!
‣ Increased space efficiency can significantly reduce run time

Scalable raster-to-TIN
Simplification

‣ raster-to-TIN simplification
• simplify raster to TIN which approximates the raster

within a user specified error threshold
• intuitively: drop points in the raster that are redundant

‣ Scalable raster to TIN simplification
• efficient when size of input raster becomes very large

r.refine

‣ Scalable raster-to-TIN simplification module
• Input: raster, error threshold e
• Output: simplified TIN

‣ Based on an I/O efficient algorithm

Outline

‣ [Introduction]
‣ Raster simplification
‣ r.refine
‣ Results

• Scalability
• Space efficiency

‣ Conclusion & Future Work

Raster
Simplification

Raster Simplification

‣ Problem:
• Given a raster with

points P and an error
ε, find S ∈ P which
approximates P within
ε: that is, every point
in S is within distance
ε of P.

Refinement Heuristics

‣ Start with 4 corner pts of
raster

‣ Repeat:
• Find point with

largest error
• Add point to

triangulation
• If no more points

with error > ε Then
break;

2

2

2

2

2

2

2

2

1

1

2

2

1

1

1

1

2

3 42

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

5

Grid

max error

1

3

5

4

Initial TIN Tile

max error

T1
T2

1

3

5

4

Building TIN Tile

3

2

1

3

5

4

Finished TIN Tile

3

2
1

2

ε = 1

Refinement: Adding Points

‣ If point not collinear add 3
triangles

‣ If collinear add 4 triangles

Delaunay Triangulation

‣ Delaunay is a type of triangulation which has the property of
maximal minimum angle. (Triangles are fat)

‣ A triangle is locally Delaunay if its circum-circle does not contain
any other points in the triangulation

‣ Delaunay is desirable because it reduces rounding errors and has
shown to reduce triangles in a TIN

Delaunay Not Delaunay Edge flipping

Scalability

‣ Refinement is not scalable
‣ Refinement requires random access to data

• If data-size > mem-size run time is very long
• GRASS segment library does not fix this

‣ Large data-sets necessitate scalability

r.refine
A scalable approach for raster-to-TIN

simplification

Tiling for I/O-Efficiency

‣ Tiling is a common I/O optimization technique

• Take size of memory as parameter
• Separate large grid into tiles
• Each tile is small enough to fit in memory
• Refine each tile individually then write to disk

2

2

2

2

2

2

2

2

1

1

2

2

1

1

1

1

2

3 42

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

5 2

2

2

2

2

2

2

2

1

1

2

2

1

1

1

1

2

3 42

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

5

Too big for memory Tiled Raster

Our Refinement

‣ We use the standard refinement
algorithm within each tile

‣ We maintain Delaunay
triangulation while building the
TIN

refineTinTile(e, tile)
1 pq ← PQ-init()
2 tt ← initTinTile(tile, pq)
3 while s ← PQ-extractMax(pq) and s "= nil
4 do if isCollinear(s)
5 then fixCollinear(s)
6 else t1 ← addTri(s, s.p1, s.p2, s.maxError, tt)
7 t2 ← addTri(s, s.p1, s.maxError, s.p3, tt)
8 t3 ← addTri(s, s.maxError, s.p2, s.p3, tt)
9 distributePoints(t1, t2, t3, s, e, pq, tt)

10 removeTriangle(s)
11 enforceDelaunay(t1, t1.p1, t1.p2, t1.p3, e, tt)
12 enforceDelaunay(t2, t1.p1, t1.p3, t1.p2, e, tt)
13 enforceDelaunay(t3, t1.p2, t1.p3, t1.p1, e, tt)
14 return tt

Figure 3.2: Our Refinement Algorithm

the worst case a triangle may have to distribute k − 1 points. Step 10 takes constant time.

For the final Steps 11-13 each call to enforce delaunay may cause that edge to be flipped,

which is done in constant time. In addition, it may cause a casacding set of edge flips. Note

that if edge e across from vertex v is flipped, the new edge r is incident to v (Figure 2.4

(c), edge ay is incident to a). Similarly, all subsequent cascading of the edges flipped are

incident to v. Thus, even though we cannot bound the number of edges per vertex, overall,

in the final triangulation, the total number of edges is O(r); thus the total number of edge

flips performed by all enforceDelaunay calls is O(k) (Note: this argument is called backward

analysis as in RIC [6]). Since each call to enforceDelaunay also has a hidden call to distribute

points we have an additional O(k) time per edge flip. The total runtime for this algorithm

is thus O(k ∗ log r + k + r ∗ k) = O(r ∗ k).

I/O: Since each tile is stored contiguously on disk, it takes r
B I/Os to read one tile

into memory. Since a tile fits entirely in memory no other I/Os are needed and the entire

refinement takes O(r
B) I/Os.

24

2

2

2

2

2

2

2

2

1

1

2

2

1

1

1

1

2

3 42

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

5

Grid

T1: 1!2!1!1!2!1!1!2!2!2!2!2!2! 3 !2!2!2!3!NULL

T2: 2!2!3!3!2!3!3!4!3!3!4!3!4! 4 !NULL

max error

4

Priority Queue

3

1

3

5

4

Initial TIN Tile

max error

T1
T2

Point List

TIN Structure

‣ Two structures:
• Triangles

• Vertices

• Triangles store:
 – Pointer to adjacent triangles
 – Pointer to vertices
 – List of points inside

• Points store:
 – Location (x,y,z)
• TIN is accessed through lower
left vertex V

5

3
3 4

2

1

3

3

v

Combining Tiles

Need to combine tiles such that boundary points are consistent

We refine one tile at a time starting with the upper left tile. We
maintain consistency by adding points to right and bottom
neighbors.

There is no known way to maintain Delaunay globally and I/
O-efficiently

17 8 4

1

3

4

Tile Boundary

17 8 4

1

3

4

Tile Boundary

Using r.refine

Running r.refine

Figure 6: TIN structure: each triangle stores a pointer to its vertices and the neighbor triangles.

individually. When we add a point to the right or bottom boundary of a tile we add that point
and necessary triangles to the adjacent tile. Since we start by refining the upper left tile and then
continue refining each row of tiles from left to right, we are guaranteed to have a right and bottom
tile neighbor that has not yet been refined.

Figure 7: Tile Boundaries: (a) Inconsistent with point 8. (b) Consistent.

4 Using r.refine

Description:
r.refine: scalable raster-to-TIN simplification.

Usage:
r.refine [-dnr] grid=name [epsilon=value] [tin=name]
[output_sites=name] [output_vect=name] [memory=value]

Flags:
-d Do NOT use Delaunay triangulation
-n Include nodata points (more points, better boundaries)
-r Render TIN in OpenGL

Parameters:
grid Input raster

epsilon Error threshold, in percentage of max elevation

7

default: 1.0
tin Output TIN file

default: output.tin
output_sites Name of output sites file.

default: NULL
output_vect Name of output vector file.

default: NULL
memory Main memory size (in MB)

default: 500

r.refine requires as input a raster name. The default simplification error threshold is 1% of
the range (maximum-min value) of the terrain. By default it creates an output (binary) file that
contains the resulting TIN and its topology; this will be used by (future) modules that will read
the TIN and compute on it. The user can specify a sites file and a vector file in which the resulting
TIN can be saved. The user can set the parameter mem to the amount of main memory to be used
by the program; by default this is set to 500MB.

r.refine has three flags, used mainly for debugging purposes:

• If -d is set, r.refine uses a regular triangulation.It is faster, but creates long ugly triangles.

• If -n is set, the nodata values are included as regular points in the simplification. This causes
the simplified terrain to have more points, but somewhat better boundaries.

• If -r is set the resulting TIN is rendered in OpenGL.

The parameter nodata is specifies whether to include nodata points in the refinement;

Example

GRASS:~/nfs-gis/> r.refine grid=elev eps=3 output_sites=eleve3 output_vect=eleve3
region size is 472 x 391
r.refine grid=elev output=output.tin output-sites=eleve3 outputVect=eleve3
error=3.00 mem=500.00 delaunay=1 no_data=0 render=0
raster2grid: reading raster elev....done
refining
write TIN tile to sites file eleve3
100%
write TIN tile to vect file eleve3
done refining
.......DONE........
err=3.00% absErr=27.48 mem=500.00MB numTiles=1
raster: 184552 points
TIN: triangles=2350 points=1183
total time: 1.70 99.9%

8

• Flags
 –d Don’t use Delaunay
 –n Include nodata points
 –r Render

• Parameters
 – Input grid
 – Epsilon (% of Max Elevation)
 – Output TIN
 – Output sites
 – Output vector
 – Memory (Default 500 MB)

r.refine Output

default: 1.0
tin Output TIN file

default: output.tin
output_sites Name of output sites file.

default: NULL
output_vect Name of output vector file.

default: NULL
memory Main memory size (in MB)

default: 500

r.refine requires as input a raster name. The default simplification error threshold is 1% of
the range (maximum-min value) of the terrain. By default it creates an output (binary) file that
contains the resulting TIN and its topology; this will be used by (future) modules that will read
the TIN and compute on it. The user can specify a sites file and a vector file in which the resulting
TIN can be saved. The user can set the parameter mem to the amount of main memory to be used
by the program; by default this is set to 500MB.

r.refine has three flags, used mainly for debugging purposes:

• If -d is set, r.refine uses a regular triangulation.It is faster, but creates long ugly triangles.

• If -n is set, the nodata values are included as regular points in the simplification. This causes
the simplified terrain to have more points, but somewhat better boundaries.

• If -r is set the resulting TIN is rendered in OpenGL.

The parameter nodata is specifies whether to include nodata points in the refinement;

Example

GRASS:~/nfs-gis/> r.refine grid=elev eps=3 output_sites=eleve3 output_vect=eleve3
region size is 472 x 391
r.refine grid=elev output=output.tin output-sites=eleve3 outputVect=eleve3
error=3.00 mem=500.00 delaunay=1 no_data=0 render=0
raster2grid: reading raster elev....done
refining
write TIN tile to sites file eleve3
100%
write TIN tile to vect file eleve3
done refining
.......DONE........
err=3.00% absErr=27.48 mem=500.00MB numTiles=1
raster: 184552 points
TIN: triangles=2350 points=1183
total time: 1.70 99.9%

8

Delaunay Non-Delaunay

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

N
u
m

b
er

 o
f

T
ri

an
g

le
s

(T
h
o

u
sa

n
d

s)

Error (% of elevation range)

Hawaii without Delaunay
Hawaii with Delaunay

Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.

14

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

N
u

m
b

er
 o

f
T

ri
an

g
le

s
(T

h
o

u
sa

n
d

s)

Error (% of elevation range)

Hawaii without Delaunay
Hawaii with Delaunay

Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.

14

Results

Test Platform

‣ Apple Dual Processor G5
‣ 2.5 GHZ CPU
‣ 1 GB RAM
‣ Data Sets from 1.6 million to 122 million points

Tiled vs Untiled Runtime
Comparison

 0

 200

 400

 600

 800

 1000

 1200

N
u

m
b

er
 o

f
se

co
n

d
s

kaweah prtoric sierra hawaii appalach cumberla lowerne

Untiled Run Time
Tiled Run Time

Figure 8: Tile vs Untiled Runtime Comparison on Datasets with 1 % Error

 0

 500

 1000

 1500

 2000

N
u

m
b

er
 o

f
se

co
n

d
s

kaweah prtoric sierra hawaii appalach cumberla lowerne

Untiled Run Time
Tiled Run Time

Figure 9: Tile vs Untiled Runtime Comparison on Datasets with .1 % Error

10

1% Error

Titled vs Untiled Runtime
Comparison

 0

 200

 400

 600

 800

 1000

 1200

N
u

m
b

er
 o

f
se

co
n

d
s

kaweah prtoric sierra hawaii appalach cumberla lowerne

Untiled Run Time
Tiled Run Time

Figure 8: Tile vs Untiled Runtime Comparison on Datasets with 1 % Error

 0

 500

 1000

 1500

 2000

N
u

m
b

er
 o

f
se

co
n

d
s

kaweah prtoric sierra hawaii appalach cumberla lowerne

Untiled Run Time
Tiled Run Time

Figure 9: Tile vs Untiled Runtime Comparison on Datasets with .1 % Error

10

0.1% Error

Tiled vs Comparison On
Appalachians

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10

R
u

n
 T

im
e

(S
ec

o
n

d
s)

Number of data points (Millions)

Appalachians Untiled
Appalachians Tiled

Figure 10: Tile vs Untiled Comparison On Appalachians

 0

 10

 20

 30

 40

 50

 60

 70

 80

N
u

m
b

er
 o

f
P

o
in

ts
 (

M
il

li
o

n
s)

kaweah prtoric sierra hawaii appalach cumberla lowerne

Points in Dataset
Points in Grid
Points in TIN

Figure 11: Gird vs. TIN Point Comparison (0.1% Error)

11

Grid vs TIN Point Comparison
 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10
R

u
n
 T

im
e

(S
ec

o
n
d
s)

Number of data points (Millions)

Appalachians Untiled
Appalachians Tiled

Figure 10: Tile vs Untiled Comparison On Appalachians

 0

 10

 20

 30

 40

 50

 60

 70

 80

N
u
m

b
er

 o
f

P
o
in

ts
 (

M
il

li
o
n
s)

kaweah prtoric sierra hawaii appalach cumberla lowerne

Points in Dataset
Points in Grid
Points in TIN

Figure 11: Gird vs. TIN Point Comparison (0.1% Error)

11

0.1% Error

Grid vs TIN Size Comparison

0.1% Error

 0

 100

 200

 300

 400

 500

S
iz

e
(M

B
)

kaweah prtoric sierra hawaii appalach cumberla lowerne

Grid Size MB
TIN Size MB

 0

 20

 40

 60

 80

 100

 120

S
iz

e
(M

B
)

kaweah prtoric sierra hawaii appalach cumberla lowerne

Grid Size MB
TIN Size MB

Grid vs TIN Size Comparison

5% Error

 0

 20

 40

 60

 80

 100

 120

S
iz

e
(M

B
)

kaweah prtoric sierra hawaii appalach cumberla lowerne

Grid Size MB
TIN Size MB

Grid vs TIN Size Comparison

10% Error

Effects of Delaunay On Number of
Triangles

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

N
u
m

b
er

 o
f

T
ri

an
g
le

s
(T

h
o
u

sa
n
d
s)

Error (% of elevation range)

Hawaii without Delaunay
Hawaii with Delaunay

Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.

14

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

N
u

m
b

er
 o

f
T

ri
an

g
le

s
(T

h
o

u
sa

n
d

s)

Error (% of elevation range)

Hawaii without Delaunay
Hawaii with Delaunay

Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.

14

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

N
u
m

b
er

 o
f

T
ri

an
g
le

s
(T

h
o
u
sa

n
d
s)

Error (% of elevation range)

Hawaii without Delaunay
Hawaii with Delaunay

Figure 15: Effect of Maintaining a Delaunay Triangulation

Figure 16: Simplifying the same raster: (a) Delaunay is maintained (b) Delaunay is ignored.

14

Conclusions
&

 Future Work

Future Work

‣ Assure quality of data. (No artificial dams or ridges)
‣ Apply flow modeling to TINs
‣ Parallelize code
‣ Take sample points (LIDAR) as input

Conclusions

‣ r.refine provides a starting point for work on TINs
‣ We introduce a scalable and practically efficient refinement

application to GRASS

