GRASS 3D Workshop – 3D data visualization with VTK

Sören Gebbert¹

¹Technical University Berlin Hydrogeology Group Institute of Applied Geosciences

FOSS4G2006 Workshop

Table of Contents

- VTK and ParaView
 - What is VTK
 - How to use ParaView
- 2 Raster map export and visualization
 - How to export with r.out.vtk
 - Raster maps in ParaView
- 3 Vector map export and visualization
 - How to export with v.out.vtk
 - Vectors maps in ParaView
- 4 Volume map export and visualization
 - How to export with r3.out.vtk
 - Volume maps in ParaView

Table of Contents

- VTK and ParaView
 - What is VTK
 - How to use ParaView
- Raster map export and visualization
 - How to export with r.out.vtk
- Vector map export and visualization
 - How to export with v.out.vtk
- Volume map export and visualization
 - How to export with r3.out.vtk
 - Volume maps in ParaView

The Visualization ToolKit (VTK)

 software system for 3D computer graphics, image processing and visualization

Raster map export and visualization Vector map export and visualization Volume map export and visualization

The Visualization ToolKit (VTK)

- software system for 3D computer graphics, image processing and visualization
- multi-plattform and supports Windows, several Unix's and MacOS X

The Visualization ToolKit (VTK)

- software system for 3D computer graphics, image processing and visualization
- multi-plattform and supports Windows, several Unix's and MacOS X
- written in C++ and bindings for Phyton, Tcl/Tk and Java available

The Visualization ToolKit (VTK)

- software system for 3D computer graphics, image processing and visualization
- multi-plattform and supports Windows, several Unix's and MacOS X
- written in C++ and bindings for Phyton, Tcl/Tk and Java available
- open source and freely available from

```
http://www.vtk.org
```


 the most sophisticated visualization toolkit available on the market

- the most sophisticated visualization toolkit available on the market
- provides leading edge data processing and visualization capabilities

- the most sophisticated visualization toolkit available on the market
- provides leading edge data processing and visualization capabilities
- supports all types of raster, vector and volume data implemented in GRASS

- the most sophisticated visualization toolkit available on the market
- provides leading edge data processing and visualization capabilities
- supports all types of raster, vector and volume data implemented in GRASS
- is actively developed and has an advanced software design

- the most sophisticated visualization toolkit available on the market
- provides leading edge data processing and visualization capabilities
- supports all types of raster, vector and volume data implemented in GRASS
- is actively developed and has an advanced software design
- easy to implement visualization applications with VTK (supports rapid prototype development)

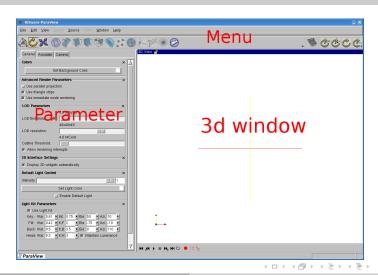
multi-platform visualization application based on VTK

- multi-platform visualization application based on VTK
- designed to visualize large data

- multi-platform visualization application based on VTK
- designed to visualize large data
- provides many tools of VTK for data processing and visualization

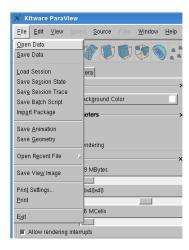
- multi-platform visualization application based on VTK
- designed to visualize large data
- provides many tools of VTK for data processing and visualization
- has a flexible and intuitive user interface

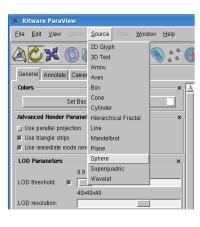
- multi-platform visualization application based on VTK
- designed to visualize large data
- provides many tools of VTK for data processing and visualization
- has a flexible and intuitive user interface
- open source and freely available from http://www.paraview.org



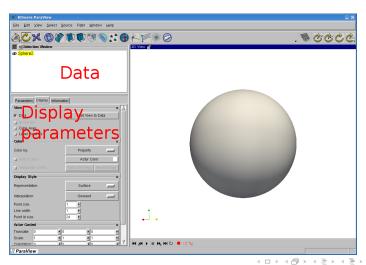
- multi-platform visualization application based on VTK
- designed to visualize large data
- provides many tools of VTK for data processing and visualization
- has a flexible and intuitive user interface
- open source and freely available from http://www.paraview.org

Please start ParaView by typing: paraview

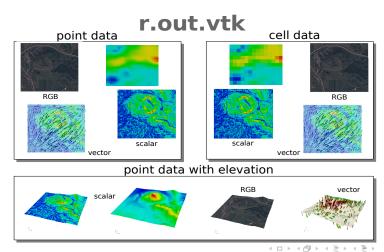




Data import and creation



Display


Table of Contents

- 1 VTK and ParaView
 - What is VTK
 - How to use ParaView
- 2 Raster map export and visualization
 - How to export with r.out.vtk
 - Raster maps in ParaView
- 3 Vector map export and visualization
 - How to export with v.out.vtk
 - Vectors maps in ParaView
- 4 Volume map export and visualization
 - How to export with r3.out.vtk
 - Volume maps in ParaView

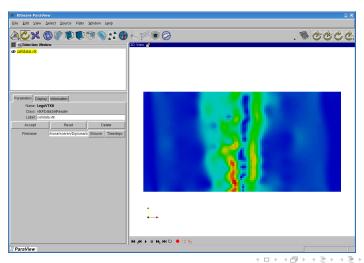
Features of r.out.vtk

How to use r.out.vtk

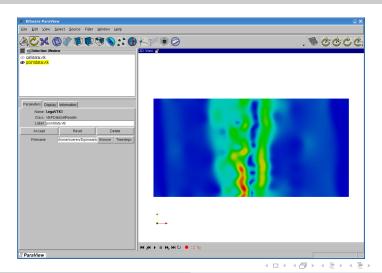
• Exporting cell data: r.out.vtk in=slope out=celldata.vtk

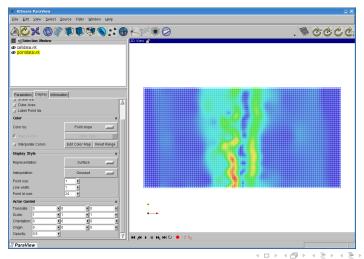
How to use r.out.vtk

- Exporting cell data: r.out.vtk in=slope out=celldata.vtk
- Exporting point data: r.out.vtk -p in=slope out=pointdata.vtk

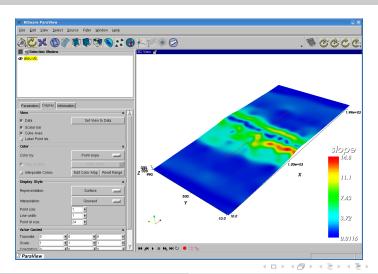

How to use r.out.vtk

- Exporting cell data: r.out.vtk in=slope out=celldata.vtk
- Exporting point data: r.out.vtk -p in=slope out=pointdata.vtk
- Exporting several data with elevation: r.out.vtk in=slope, aspect, elevation elevation=elevation out=elev.vtk

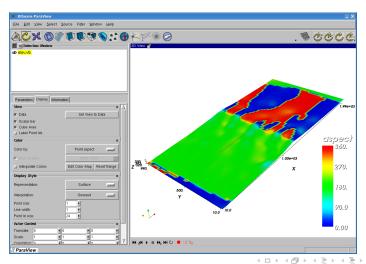

Cell data



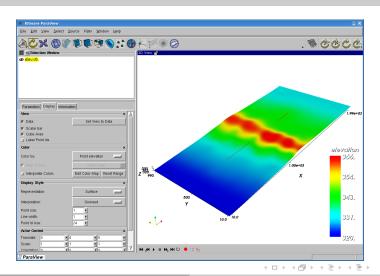
Point data



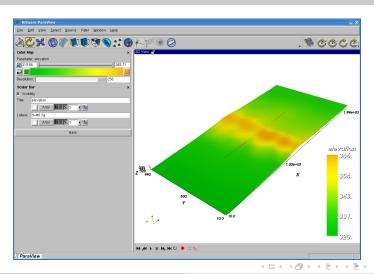
Point and Cell data together



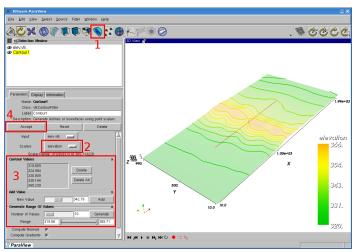
Elevation and data



Elevation and data

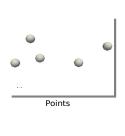


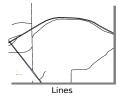
Elevation and data

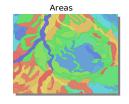


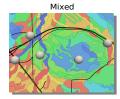
Elevation color table

Contouring


Table of Contents


- VTK and ParaView
 - What is VTK
 - How to use ParaView
- 2 Raster map export and visualization
 - How to export with r.out.vtk
 - Raster maps in ParaView
- 3 Vector map export and visualization
 - How to export with v.out.vtk
 - Vectors maps in ParaView
- 4 Volume map export and visualization
 - How to export with r3.out.vtk
 - Volume maps in ParaView


Features of v.out.vtk



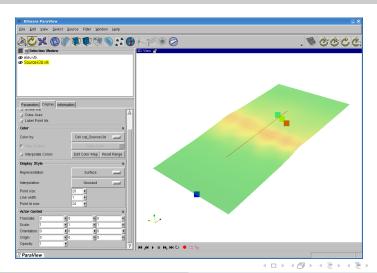
v.out.vtk

 Exporting vector points: v.out.vtk input=Sources3d output=Sources3d.vtk

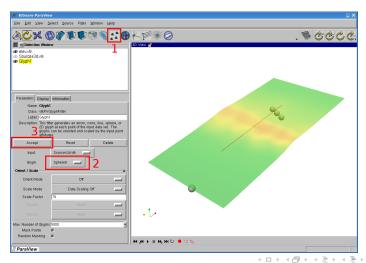
- Exporting vector points: v.out.vtk input=Sources3d output=Sources3d.vtk
- Exporting vector lines: v.out.vtk input=roads3d output=roads3d.vtk type=line

- Exporting vector points: v.out.vtk input=Sources3d output=Sources3d.vtk
- Exporting vector lines: v.out.vtk input=roads3d output=roads3d.vtk type=line
- Exporting polygonal data

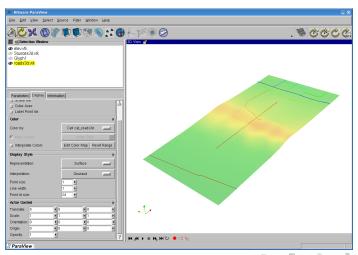
- Exporting vector points: v.out.vtk input=Sources3d output=Sources3d.vtk
- Exporting vector lines: v.out.vtk input=roads3d output=roads3d.vtk type=line
- Exporting polygonal data
 - trees: v.out.vtk input=trees3d output=trees3d.vtk type=line, face



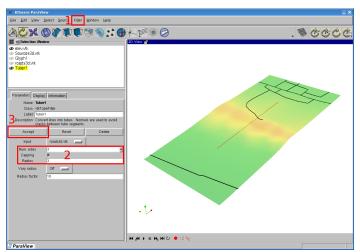
- Exporting vector points: v.out.vtk input=Sources3d output=Sources3d.vtk
- Exporting vector lines: v.out.vtk input=roads3d output=roads3d.vtk type=line
- Exporting polygonal data
 - trees: v.out.vtk input=trees3d output=trees3d.vtk type=line, face
 - buildings: v.out.vtk input=industry3d output=industry3d.vtk type=face



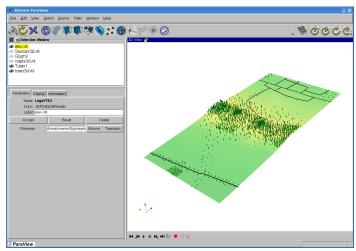
Vector points



Using the Glyph filter



Vector lines

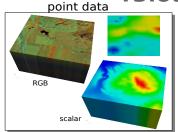


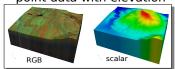
Using the *Tube* filter

Trees

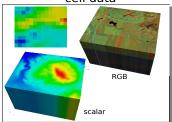
Buildings and Triangulate filter

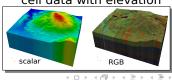
Table of Contents


- 1 VTK and ParaView
 - What is VTK
 - How to use ParaView
- 2 Raster map export and visualization
 - How to export with r.out.vtk
 - Raster maps in ParaView
- 3 Vector map export and visualization
 - How to export with v.out.vtk
 - Vectors maps in ParaView
- 4 Volume map export and visualization
 - How to export with r3.out.vtk
 - Volume maps in ParaView



Features of r3.out.vtk


r3.out.vtk


point data with elevation

cell data

cell data with elevation

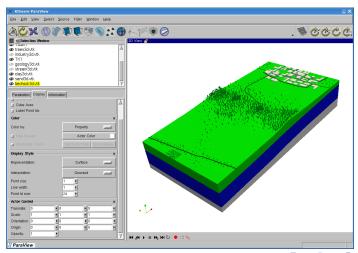
• Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk

- Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk
- Exporting point data: r3.out.vtk -p in=Boundaries, ResultStream out=gw3d.vtk

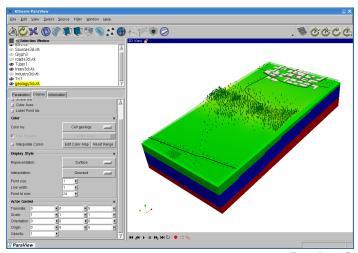
- Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk
- Exporting point data: r3.out.vtk -p in=Boundaries, ResultStream out=gw3d.vtk
- Exporting elevation data

- Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk
- Exporting point data: r3.out.vtk -p in=Boundaries, ResultStream out=gw3d.vtk
- Exporting elevation data
 - reduce the z-resolution g.region tbres=150
 - r3.out.vtk -sp top=elevation bottom=border_sand_clay out=clay3d.vtk

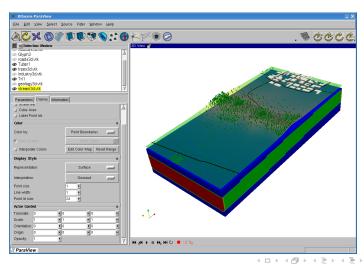
- Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk
- Exporting point data: r3.out.vtk -p
 in=Boundaries, ResultStream out=gw3d.vtk
- Exporting elevation data
 - reduce the z-resolution g.region tbres=150
 - r3.out.vtk -sp top=elevation
 bottom=border_sand_clay out=clay3d.vtk
 - r3.out.vtk -sp top=border_sand_clay bottom=border_bedrock_sand out=sand3d.vtk



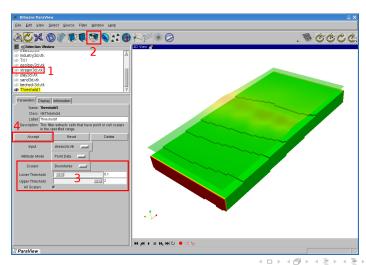
- Exporting cell data: r3.out.vtk in=geology out=geology3d.vtk
- Exporting point data: r3.out.vtk -p
 in=Boundaries, ResultStream out=gw3d.vtk
- Exporting elevation data
 - reduce the z-resolution g.region tbres=150
 - r3.out.vtk -sp top=elevation
 bottom=border_sand_clay out=clay3d.vtk
 - r3.out.vtk -sp top=border_sand_clay bottom=border_bedrock_sand out=sand3d.vtk
 - r3.out.vtk -sp top=border_bedrock_sand bottom=bottom out=bedrock3d.vtk



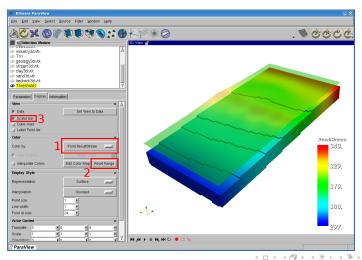
Elevation data



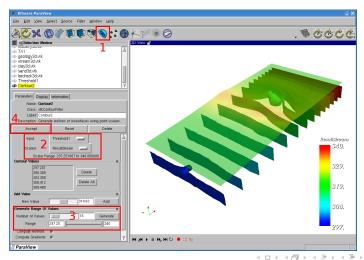
Cell data

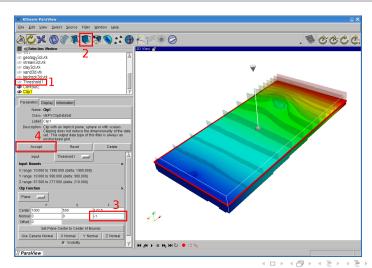


Point data



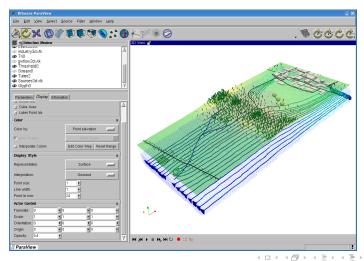
Data extraction


Data extraction

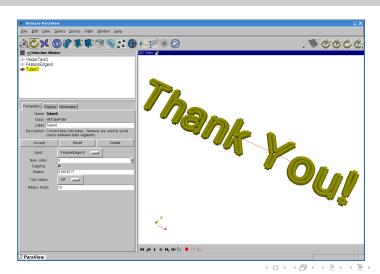


Isosurfaces

Clipping


Export 3d vector data

- Set the default region: g.region -dp3
- Exporting vector data: r3.out.vtk -p
 in=Boundaries
 vectormaps=ResultStreamVector_x,
 ResultStreamVector_y, ResultStreamVector_x
 out=qwflow3d.vtk



All together with stream lines

The End

How to export with r3.out.vtk Volume maps in ParaView

The End

Sören Gebbert

soerengebbert@gmx.de www-pool.math.tu-berlin.de/~soeren/grass/modules

Technical University Berlin
Hydrogeology Group
Institute of Applied Geoscience

