Multiple surface visualization

Helena Mitasova North Carolina State University

Multiple surfaces in nviz

Outline

- Surface overlay and side-by-side visualization: rapidly changing topography – coast, urban areas
- Cutting planes with overlayed surfaces
- Dynamic surfaces with file sequencing tool

Start grass61

select location **nccoast-spft-wks06** mapset **helena** or create your own mapset and add helena

Study area: NC coastal dunes

View lidar based DEM for the region **g.region** rast=el01.20ft.region -p **nviz** el01.20ft.region

Multiple surfaces: Overlay

set region to a smaller area that we will use for practice g.region rast=elev74.3ft res=6 nviz elev74.3ft,elev99.3ft set view approx from E, zexag 4, persp 20, height 1200 To compare the surfaces we give each a constant color: Surface attrib -> change color ->New constant->red ->OK -> Accept->Draw

change Current to elev99.3ft and do the same with yellow

GRASS GIS

Open Source Geospatial Foundation

Multiple surfaces: cut plane

To improve vertical shape perception add Oft plane Panel->Surface->New->Constant->enter O->Accept change its Subsampling Fine to 1 Add cutting plane Panel->Cutting Planes->Current Plane O Rotate 180, Color B or T, move crosshair East to West To better distinguish the cut Panel->Lightning lower Brightness to 0.16

Example Application: Dune Migration

500m

1974: 108 ft

2001: 72 ft

n

The main dune rotates clockwise while its peak moves southeast. Volume and area are relatively stable

Cutting plane with animation

surfaces move closer as the cutting plane moves farther to keep the crossection at the same distance from the viewer

Multiple surfaces: side-by-side

Delete Oft plane, set cutting plane to None View from S, height 3500 Panel->Surface->Position

move crosshair to the right, change current surface to elev99 and move crosshair to the left

You can change the lighting, view, for both simultaneously

Tuning the level of detail for feature extraction

xganim wqw* put it into the loop, slow it down, step through the frames to find what to include

Steady state after wqw.0142

nviz lid99.el co=wqw.0166 zex-5, height 500, view N, light N, persp=25

Scripting -> Script Tools -> File sequence tool Fields -> Add Field type -> surface attribute -> topo use nviz map lid99.el Accept

Map browser click mapset helena file lid99.el appears in 3rd window done

same with attribute color, select time series wqw* in map browser save fields

build script, name it, enter image root name, accept, done play script

GRASS GIS

Play script will render the surfaces (it is slow) and save them as a series of rgb images. Create an animated gif **convert** -delay 20 -loop 10 wks*.rgb wateranim3.gif

More complex water on terrain

Open Source Geospatial Foundation

GRASS GIS

Points on surface

Open Source Geospatial Foundation

4D visualization – theoretically can be done in GRASS6, this was done in GRASS4. I using prototype module sg4d

GRASS GIS

Open Source Geospatial Foundation

Acknowledgment

Funding by US Army Research Office, NC WRRI and North Carolina Sediment Control Commission is gratefully acknowledged