
Using R with FOSS4G, in particular with GRASS:
Representing Spatial Data in R

Roger Bivand

Norges Handelshøyskole
Bergen, Norway;

Roger.Bivand@nhh.no; Roger.Bivand@R-project.org

14:00 — 14:30, 12 September 2006

mailto:Roger.Bivand@nhh.no
mailto:Roger.Bivand@R-project.org

Why do data analysis on spatial data?

I The key reasons for doing data analysis on spatial data are to
summarise the data, to visualise such summaries, and possibly
to infer from it, to model and to predict using it.

I Doing exploratory data analysis on spatial data is often a
helpful way of carrying out data cleaning, of getting closer to
the data

I While a lot of spatial data handling quite naturally stays with
the“what is where (when)”question, the“why the where
(when)”question can give greater insight into what is driving
the data

I So we do data analysis on spatial data when we are interested
in processes driving the data

Data analysis and GIS

Geographical Information System

Other
geographical
information

systems

User
interface

External
statistical

and modelling
packages

Data input
processing

Data storage
retrieval and

database
management

manipulation
Data

and
analysis

Display
and

product
generator

Input
Data from

maps

Census
data

Field survey
data, GPS

Remote sensing
data

Data from
other digital

sources

Output

Maps

Statistics

Data inputs
to models

INTERFACE BETWEEN GIS
AND STATISTICS ENVIRONMENT

Photographic
products

Reports

Why use R to do data analysis?

I Statisticians — the professionals in data analysis — speak S;
R is the Free Software implementation of that language

I Statisticians implement data analysis methods using R
(among others), and value access to source code — the useR
to developeR continuum matters

I The R project is highly extensible by design, and support
through the community and the Comprehensive R Archive
Network (CRAN) for contributed packages is excellent

I R lets you get as close to the data as you need, it is an
excellent environment for prototyping, it is embeddable too
(in Python, in PostgreSQL, in (sorry) (D)COM)

http://rpy.sf.net
http://www.joeconway.com/plr/
http://cran.r-project.org/contrib/extra/dcom/

What is CRAN?

I The Comprehensive R Archive Network (CRAN) is where the
R engine can be found (source and some binaries) — there are
many mirrors

I The engine ships with a handful of base packages, and a
similar number of recommended packages providing a wide
range of graphics and statistics functionality

I CRAN is also the main repository for contributed packages
(source and some binaries), including the ones used for spatial
data handling and analysis; packages are thoroughly checked
before being made available from CRAN

I Packages on CRAN are also used for quality checks on the R
engine, to see whether code changes in the engine break
packages

Workshop infrastructure

I Task views are one of the nice innovations on CRAN that help
navigate in the jungle of contributed packages — the Spatial
task view is a useful resource

I The task view is also a point of entry to the Rgeo website
hosted off CRAN, and updated quite often; it tries to mention
in more detail contributed packages for spatial data analysis

I It also provides a link to the sp development area on
Sourceforge, with CVS access to sp and an R repository of
source and Windows binary packages not yet ready for CRAN

I Finally, it links to the R-sig-geo mailing list, which is the
prefered place to ask questions about analysing
spatial/geographical data

http://cran.r-project.org/src/contrib/Views/Spatial.html
http://www.r-project.org/Rgeo/
http://r-spatial.sourceforge.net/
https://www.stat.math.ethz.ch/mailman/listinfo/R-SIG-Geo/

Spatial data in R

I At base, spatial data can be held in GIS processes, in external
databases, or in external files

I This needs to be interfaced with native R data structures in
an active R process (R is single-threaded)

I The different external processes and formats need handling in
different ways (although GDAL/OGR provides useful
abstraction mechanisms)

I The sp package has been written as a spatial/GIS data
connection to provide shared spatial data structures both for
input/output and for use in analysis and visualisation

Data flow for spatial data in R

Visualization Analysis

GIS data connection

DBI/Rdbi

external databases

GDAL/OGR

external filesexternal GIS

GIS interfaces

Should R be a GIS?

I A serious question which is raised repeatedly is the extent to
which R contributed packages should provide GIS functionality

I Questioners on the list have asked about remote sensing,
Tomlin-style cartographic modelling, vector cleaning, and
other topics

I It does seem better to be minimalist, only providing routes to
other software, rather than trying to do too much poorly

I R can however be integrated as part of a general data flow,
involving spatial data and a front-end user interface; Rpad is a
nice example

http://www.rpad.org/Rpad/InterruptionMap.Rpad

Integrating R as middleware

external
databases

external

external
files

R/GIS
interfaces GUI

GIS/application
GIS functionality

Short aside on classes, objects, and methods in R

I R has two class/method styles, old-style aka. S3 and new style
aka. S4; in neither do methods belong to classes, and no
class/method system is pervasive

I Most objects returned by analysis functions are S3 objects,
lists with components and at least a class attribute, but no
class definition

I S4 classes are formally defined, removing the possibility that
users may corrupt the contents of an object by accident

I Method dispatch for S3 objects is on the class of the first
function argument, for S4 objects on one or more class
signatures

Spatial objects

I The foundation here is the Spatial class, with just two slots
(new-style class objects have pre-defined components called
slots)

I The first is a bounding box, and is mostly used for setting up
plots

I The second is a CRS class object defining the coordinate
reference system, and may be set to CRS(as.character(NA)),
its default value.

I Operations on Spatial* objects should update or copy these
values to the new Spatial* objects being created

Spatial points

I The most basic spatial data class is a point, which may have 2
or 3 dimensions

I A single coordinate, or a set of such coordinates, may be used
to define a SpatialPoints object; coordinates should be of
mode double" and will be promoted if not

I The points in a SpatialPoints object may be associated with
a row of attributes to create a SpatialPointsDataFrame object

I The coordinates and attributes may, but do not have to be
keyed to each other using ID values

Spatial points

Using the Meuse bank data set of soil samples and measurements
of heavy metal pollution provided with sp, we’ll make a
SpatialPoints object.
> library(sp)

> data(meuse)

> coords <- SpatialPoints(meuse[, c("x", "y")])

> summary(coords)

Object of class SpatialPoints

Coordinates:

min max

x 178605 181390

y 329714 333611

Is projected: NA

proj4string : [NA]

Number of points: 155

Spatial points

Now we’ll add the original data frame to make a
SpatialPointsDataFrame object. Many methods for standard data
frames just work with SpatialPointsDataFrame objects.
> meuse1 <- SpatialPointsDataFrame(coords, meuse)

> names(meuse1)

[1] "x" "y" "cadmium" "copper" "lead" "zinc"

[7] "elev" "dist" "om" "ffreq" "soil" "lime"

[13] "landuse" "dist.m"

> summary(meuse1$zinc)

Min. 1st Qu. Median Mean 3rd Qu. Max.

113.0 198.0 326.0 469.7 674.5 1839.0

> stem(meuse1$zinc, scale = 1/2)

The decimal point is 2 digit(s) to the right of the |

0 | 12223333344444455666677778888899999999

2 | 000000011111112222233444555666678880022334455788

4 | 00012235677001455556789

6 | 01144678890012455678889

8 | 0133113

10 | 235604469

12 | 8

14 | 5357

16 | 7

18 | 4

Spatial points classes and their slots

bbox
proj4string

coords
Spatial

coords.nrs
data

SpatialPoints

att

Spatial

AttributeList

SpatialPointsDataFrame

SpatialPoints

vector

Data frames

I Note that SpatialPointsDataFrame objects at present have
data slots of class AttributeList; this will change from R
2.4.0 to regular data.frame

I Data frames are the workhorses of much analysis and
visualisation in S— they are lists of equal-length vectors of
(possibly) different types of data

I List components are accessed either by name or number, often
using the $ operator to access by name

I Spatial*DataFrame family objects behave in most cases like
data frames

Spatial lines and polygons

I A Line object is just a spaghetti collection of 2D coordinates;
a Polygon object is a Line object with equal first and last
coordinates

I A Lines object is a list of Line objects, such as all the
contours at a single elevation; the same relationship holds
between a Polygons object and a list of Polygon objects, such
as islands belonging to the same county

I SpatialLines and SpatialPolygons objects are made using
lists of Lines or Polygons objects respectively

I SpatialLinesDataFrame and SpatialPolygonsDataFrame

objects are defined using SpatialLines and SpatialPolygons

objects and standard data frames, and the ID fields are here
required to match the data frame row names

Spatial polygons

The Meuse bank data set also includes the coordinates of the edge
of the river, linked together at the edge of the study area to form a
polygon. We can make these coordinates into a SpatialPolygons

object:
> data(meuse.riv)

> str(meuse.riv)

num [1:176, 1:2] 182004 182137 182252 182314 182332 ...

> river_polygon <- Polygons(list(Polygon(meuse.riv)), ID = "meuse")

> rivers <- SpatialPolygons(list(river_polygon))

> summary(rivers)

Object of class SpatialPolygons

Coordinates:

min max

r1 178304.0 182331.5

r2 325698.5 337684.8

Is projected: NA

proj4string : [NA]

Spatial lines

There is a helper function contourLines2SLDF to convert the list of
contours returned by contourLines into a SpatialLinesDataFrame

object. This example shows how the data slot row names match
the ID slot values of the set of Lines objects making up the
SpatialLinesDataFrame, note that some Lines objects include
multiple Line objects:
> volcano_sl <- contourLines2SLDF(contourLines(volcano))

> row.names(slot(volcano_sl, "data"))

[1] "C_1" "C_2" "C_3" "C_4" "C_5" "C_6" "C_7" "C_8" "C_9"

[10] "C_10"

> sapply(slot(volcano_sl, "lines"), function(x) slot(x,

+ "ID"))

[1] "C_1" "C_2" "C_3" "C_4" "C_5" "C_6" "C_7" "C_8" "C_9"

[10] "C_10"

> sapply(slot(volcano_sl, "lines"), function(x) length(slot(x,

+ "Lines")))

[1] 3 4 1 1 1 2 2 3 2 1

> volcano_sl$level

[1] 100 110 120 130 140 150 160 170 180 190

Levels: 100 110 120 130 140 150 160 170 180 190

Spatial Polygons classes and slots

coords
Spatial
lines

plotOrder
Spatial

polygons

bbox
proj4string

Polygon

coords

labpt
area
hole
ringDir

LineLines

ID

Polygons

plotOrder
labpt
ID
area

SpatialLines

Spatial

SpatialPolygons

Lines

Polygons

Spatial grids and pixels

I There are two representations for data on regular rectangular
grids (oriented N-S, E-W): SpatialPixels and SpatialGrid

I SpatialPixels are like SpatialPoints objects, but the
coordinates have to be regularly spaced; the coordinates are
stored, as are grid indices

I SpatialPixelsDataFrame objects only store attribute data
where it is present, but need to store the coordinates and grid
indices of those grid cells

I SpatialGridDataFrame objects do not need to store
coordinates, because they fill the entire defined grid, but they
need to store NA values where attribute values are missing

Spatial pixels

Let’s make a SpatialPixelsDataFrame object for the Meuse bank
grid data provided, with regular points at a 40m spacing. The data
include soil types, flood frequency classes and distance from the
river bank:
> data(meuse.grid)

> coords <- SpatialPixels(SpatialPoints(meuse.grid[, c("x",

+ "y")]))

> meuseg1 <- SpatialPixelsDataFrame(coords, meuse.grid)

> names(meuseg1)

[1] "x" "y" "part.a" "part.b" "dist" "soil" "ffreq"

> slot(meuseg1, "grid")

x y

cellcentre.offset 178460 329620

cellsize 40 40

cells.dim 78 104

> object.size(meuseg1)

[1] 227712

> dim(slot(meuseg1, "data"))

[1] 3103 7

Spatial grids

In this case we convert the SpatialPixelsDataFrame object to a
SpatialGridDataFrame by making a change in-place. In other
contexts, it is much more usual to create the GridTopology object
in the grid slot directly, and populate the grid from there, as we’ll
see later:
> meuseg2 <- meuseg1

> fullgrid(meuseg2) <- TRUE

> slot(meuseg2, "grid")

x y

cellcentre.offset 178460 329620

cellsize 40 40

cells.dim 78 104

> class(slot(meuseg2, "grid"))

[1] "GridTopology"

attr(,"package")

[1] "sp"

> object.size(meuseg2)

[1] 426060

> dim(slot(meuseg2, "data"))

[1] 8112 7

Spatial grid and pixels classes and their slots

grid
grid.index
SpatialPoints

grid
grid.index
SpatialPoints

data
SpatialPixels

SpatialGrid
data

cellcentre.offset
cellsize
cells.dim

att

bbox
proj4string

coords
Spatial

AttributeList

GridTopology

Spatial

SpatialPoints

vector

SpatialGrid

SpatialPixels
SpatialPixelsDataFrame

SpatialGridDataFrame

Spatial classes provided by sp

This table summarises the classes provided by sp, and shows how
they build up to the objects of most practical use, the
Spatial*DataFrame family objects:

data type class attributes extends
points SpatialPoints none Spatial

points SpatialPointsDataFrame AttributeList SpatialPoints

pixels SpatialPixels none SpatialPoints

pixels SpatialPixelsDataFrame AttributeList SpatialPixels

SpatialPointsDataFrame

full grid SpatialGrid none SpatialPixels

full grid SpatialGridDataFrame AttributeList SpatialGrid

line Line none
lines Lines none Line list
lines SpatialLines none Spatial, Lines list
lines SpatialLinesDataFrame data.frame SpatialLines

polygon Polygon none Line

polygons Polygons none Polygon list
polygons SpatialPolygons none Spatial, Polygons list
polygons SpatialPolygonsDataFrame data.frame SpatialPolygons

Methods provided by sp

This table summarises the methods provided by sp:

method what it does
[select spatial items (points, lines, polygons, or

rows/cols from a grid) and/or attributes variables
$, $<-, [[, [[<- retrieve, set or add attribute table columns
spsample sample points from a set of polygons, on a set of

lines or from a gridded area
bbox get the bounding box
proj4string get or set the projection (coordinate reference sys-

tem)
coordinates set or retrieve coordinates
coerce convert from one class to another
overlay combine two different spatial objects

Using Spatial family objects

I Very often, the user never has to manipulate Spatial family
objects directly, as we have been doing here, because methods
to create them from external data are also provided

I Because the Spatial*DataFrame family objects behave in
most cases like data frames, most of what we are used to
doing with standard data frames just works — like [or $

(but no merge, etc., yet)

I These objects are very similar to typical representations of the
same kinds of objects in geographical information systems, so
they do not suit spatial data that is not geographical (like
medical imaging) as such

I They provide a standard base for analysis packages on the one
hand, and import and export of data on the other, as well as
shared methods

	Introduction
	Spatial points
	Spatial polygons
	Spatial grids and pixels

