
Using R with FOSS4G, in particular with GRASS:
The R— GRASS 6 interface

Roger Bivand

Norges Handelshøyskole
Bergen, Norway;

Roger.Bivand@nhh.no; Roger.Bivand@R-project.org

15:10 — 15:40, 12 September 2006

mailto:Roger.Bivand@nhh.no
mailto:Roger.Bivand@R-project.org

Introduction

I Initial insight that R can be run from the GRASS prompt,
which is a standard shell prompt including GRASS
environment variables

I GRASS is a GPL’ed development of a US Army raster GIS
with vector capabilities; GRASS 5.0 introduced support for
NULL/NA and floating point raster values

I First versions used intermediate text files, later versions added
calls to a local, frozen, copy of the GRASS libgis C functions
called from R

I The GRASS 5.0 interface supports raster and sites data, but
not vector, GRASS is on CRAN

Legacy GRASS 5 interface

I The current window should determine the way in which raster
data are retrieved and transferred; this should also apply to
vector/site data with regard to extent

I Data moved to GRASS over the interface should be furnished
with attributes expected by GRASS, including category labels
and colours

I These criteria are important when the interface is used in
BATCH mode to supplement GRASS shell scripts

GRASS 6 interface

I The GRASS 6 interface differs from the GRASS 5 in a number
of ways, in particular it does not use compiled code, just
temporary files (spgrass6 is on CRAN)

I If the GDAL/OGR GRASS plugins are used, rgdal functions
can be used to read GRASS data directly into R, but not to
write to GRASS

I So intermediate temporary files are the chosen solution, using
shapefiles for vector data and BIL binaries for raster data; as
yet category labels are passed from GRASS to R, but not R to
GRASS for raster data

I Support for GRASS under Cygwin is provided, but native
Windows GRASS is untested (a Windows binary is on CRAN);
Mac OSX is treated as Unix, and spgrass6 is installed from
source (like rgdal)

Using the GRASS 6 interface

Provided that the spgrass6 package has been installed following
the packages it depends upon, sp, maptools, foreign and rgdal,
the interface is used more or less as before. R is started from
within a GRASS session from the command line, and the spgrass6
loaded with its dependencies:
> if (nchar(Sys.getenv("GISRC")) == 0) stop("Start R inside GRASS")

> library(spgrass6)

> G <- gmeta6()

> .LOC <- G$LOCATION_NAME

> if (length(grep("^spearfish", .LOC)) == 0) stop("not in spearfish")

Raster data transfer
At the present stage of the interface, raster data transfer is done
layer by layer, and uses temporary binary files. The following
command reads the soil pH values into a SpatialGridDataFrame

object, treating the values returned as floating point (double in R):
> soilsph <- readRAST6("soils.ph", ignore.stderr = TRUE)

> summary(soilsph)

> image(soilsph, "soils.ph", col = rev(cm.colors(6)))

> legend("bottom", legend = 0:5, fill = rev(cm.colors(6)),

+ cex = 0.8, bty = "n", horiz = TRUE)

Object of class SpatialGridDataFrame

Coordinates:

min max

coords.x1 589980 609000

coords.x2 4913700 4928010

Is projected: TRUE

proj4string : [+proj=utm]

proj4string : [+zone=13]

proj4string : [+a=6378206.4]

proj4string : [+rf=294.9786982]

proj4string : [+no_defs]

proj4string : [+nadgrids=/home/rsb/topics/grass62_0820/grass-6.2.cvs/etc/nad/conus]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

1 589995 30 634

2 4913715 30 477

Data attributes:

soils.ph

Min. : 1.000

1st Qu.: 3.000

Median : 4.000

Mean : 3.380

3rd Qu.: 4.000

Max. : 5.000

NA's :17750.000

Soil pH values for Spearfish

Moving multiple rasters
A feature of the legacy interface was the ability to move category
labels to R; this is at present emulated by matching the labels
reported by GRASS. This is implemented in the readRAST6

function, when the cat= argument is set to TRUE as appropriate:
> spear <- readRAST6(c("elevation.dem", "landcover.30m"), cat = c(FALSE,

+ TRUE), ignore.stderr = TRUE)

> summary(spear)

Object of class SpatialGridDataFrame

Coordinates:

min max

coords.x1 589980 609000

coords.x2 4913700 4928010

Is projected: TRUE

proj4string : [+proj=utm]

proj4string : [+zone=13]

proj4string : [+a=6378206.4]

proj4string : [+rf=294.9786982]

proj4string : [+no_defs]

proj4string : [+nadgrids=/home/rsb/topics/grass62_0820/grass-6.2.cvs/etc/nad/conus]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize cells.dim

1 589995 30 634

2 4913715 30 477

Data attributes:

elevation.dem landcover.30m

Min. : 1066 Evergreen Forest :135375

1st Qu.: 1200 Grasslands/Herbaceous : 67396

Median : 1316 Pasture/Hay : 56263

Mean : 1354 Small Grains : 9023

3rd Qu.: 1488 Emergent Herbaceous Wetlands: 5673

Max. : 1840 (Other) : 18587

NA's :10101 NA's : 10101

The Spearfish boxplot: elevation by landcover

The figure shows how much of the functionality of the legacy
raster interface has been maintained, by relating elevation and
landcover categories:
> grd <- slot(spear, "grid")

> lcovareas <- table(spear$landcover.30m) * (prod(slot(grd,

+ "cellsize"))/10000)

> oopar <- par(mar = c(3, 16, 2, 2) + 0.1)

> boxplot(elevation.dem ~ landcover.30m, data = spear, medlwd = 1,

+ horizontal = TRUE, las = 1, width = lcovareas)

> par(oopar)

The Spearfish boxplot: elevation by landcover

Vector data

The package provides functions to move vector features and
associated attribute data to R and back again:
> bugsDF <- readVECT6("bugsites", ignore.stderr = TRUE)

> vInfo("streams", ignore.stderr = TRUE)

points lines boundaries centroids areas islands

0 104 12 4 4 4

faces kernels

0 0

> streams <- readVECT6("streams", type = "line,boundary", remove.duplicates = FALSE,

+ ignore.stderr = TRUE)

Vector data

The remove.duplicates= argument is set to TRUE when there are
only for example lines or areas, and the number present is greater
than the data count (the number of rows in the attribute data
table). The type= argument is used to override type detection
when multiple types are non-zero, as here, where we choose lines
and boundaries, but the function guesses areas, returning just filled
water bodies.
> image(spear, "elevation.dem", col = terrain.colors(20), axes = TRUE)

> plot(streams, col = "blue", add = TRUE)

> plot(bugsDF, pch = 19, col = "grey25", cex = 0.5, add = TRUE)

Streams and bugsites

Interpolation: The Burrough/McDonnell Meuse bank data
set

The Maas river bank soil pollution data (Limburg, The
Netherlands) are sampled along the Dutch bank of the river Maas
(Meuse) north of Maastricht; the data are those used in Burrough
and McDonnell (1998, pp. 309–311):
> system("r.in.gdal input=BMcD_fldf.txt output=BMcD_fldf location=BMcD")

> system("g.gisenv set='LOCATION_NAME=BMcD'")

> library(gstat)

> system("v.in.ogr dsn=. layer=BMcD output=BMcD")

Reading the data

> BMcD <- readVECT6("BMcD", ignore.stderr = TRUE)

> BMcD$Fldf <- factor(BMcD$Fldf)

> names(BMcD)

[1] "cat" "x" "y"

[4] "xl" "yl" "elev"

[7] "d_river" "Cd" "Cu"

[10] "Pb" "Zn" "LOI"

[13] "Fldf" "Soil" "lime"

[16] "landuse"

Since a variable of interest — flood
frequency — is a categorical variable
but read as numeric, it is set to
factor

Observed zinc ppm levels

Zn

●
●

●

●
●

●●
●
●
●

●

●
●●

●
●

●

●
●
●

●●
●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

113
186.25
307.5
698.5
1839

The zinc ppm values are rather
obviously higher near the river bank
to the west, and at the river bend in
the south east; the pollution is from
upstream industry in the watershep,
and is deposited in silt during
flooding
> bubble(BMcD, "Zn")

Flood frequency boxplots

●

●
●

●

●
●

●
●

●

●

●

●

1 2 3

50
0

10
00

15
00

Boxplots of the zinc ppm values by
flood frequency suggest that the
apparent skewness of the values may
be related to heterogeneity in
environmental “drivers”
> boxplot(Zn ~ Fldf, BMcD, width = table(BMcD$Fldf),

+ col = "grey")

Reading the prediction locations

Reading the prediction locations (the
helper function gmeta2grd can be
used to generate a prediction grid for
the GRASS computation region) —
we also impose the same
representation of the projection:
> BMcD_grid <- as(readRAST6("BMcD_fldf",

+ ignore.stderr = TRUE), "SpatialPixelsDataFrame")

> names(BMcD_grid) <- "Fldf"

> BMcD_grid$Fldf <- as.factor(BMcD_grid$Fldf)

> proj4string(BMcD) <- CRS(proj4string(BMcD_grid))

> pts <- list("sp.points", BMcD,

+ pch = 4, col = "white")

> spplot(BMcD_grid, "Fldf", col.regions = 1:3,

+ sp.layout = list(pts))

1
2
3

Set up class intervals and palettes

Setting up class intervals and palettes initially will save time later;
note the use of colorRampPalette, which can also be specified
from RColorBrewer palettes:
> bluepal <- colorRampPalette(c("azure1", "steelblue4"))

> brks <- c(0, 130, 155, 195, 250, 330, 450, 630, 890, 1270, 1850)

> cols <- bluepal(length(brks) - 1)

> sepal <- colorRampPalette(c("peachpuff1", "tomato3"))

> brks.se <- c(0, 240, 250, 260, 270, 280, 290, 300, 350, 400, 1000)

> cols.se <- sepal(length(brks.se) - 1)

> scols <- c("green", "red")

Modelling the local smooth

If we choose to use geostatistical
methods, we need a model of local
dependence, and conventionally fit
an exponential model to the zinc
ppm data:
> library(gstat)

> cvgm <- variogram(Zn ~ 1, data = BMcD,

+ width = 100, cutoff = 1000)

> efitted <- fit.variogram(cvgm,

+ vgm(psill = 1, model = "Exp",

+ range = 100, nugget = 1))

> efitted

model psill range

1 Nug 21652.99 0.000

2 Exp 157840.74 336.472

distance

se
m

iv
ar

ia
nc

e

50000

100000

150000

200 400 600 800

●

●

●

●

●

●

●
●

● ●

32

176

221

250

267
285

312 354
328 306

Ordinary kriging

Using the fitted variogram, we define the geostatistical model and
use it both for LOO cross validation and for predictions, also
storing the prediction standard errors:
> OK_fit <- gstat(id = "OK_fit", formula = Zn ~ 1, data = BMcD, model = efitted)

> pe <- gstat.cv(OK_fit, debug.level = 0, random = FALSE)$residual

> round(sqrt(mean(pe^2)), 2)

[1] 261.55

> z <- predict(OK_fit, newdata = BMcD_grid, debug.level = 0)

> BMcD_grid$OK_pred <- z$OK_fit.pred

> BMcD_grid$OK_se <- sqrt(z$OK_fit.var)

Ordinary kriging predictions

Fitted exponential OK model

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

By now, the typical idiom of adding
constructed variables to the
SpatialPixels data frame object, and
displaying them by name, should be
familiar:
> image(BMcD_grid, "OK_pred",

+ breaks = brks, col = cols)

Ordinary kriging standard errors

Fitted exponential OK standard errors

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

under 240
240 − 250
250 − 260
260 − 270
270 − 280
280 − 290
290 − 300
300 − 350
350 − 400
over 400 For the standard errors, we use a

different palette, but the procedure is
the same:
> image(BMcD_grid, "OK_se", breaks = brks.se,

+ col = cols.se)

Universal kriging — adding flood frequencies

We know that flood frequencies
make a difference — can we combine
the local smooth with that global
smooth?
> cvgm <- variogram(Zn ~ Fldf,

+ data = BMcD, width = 100,

+ cutoff = 1000)

> uefitted <- fit.variogram(cvgm,

+ vgm(psill = 1, model = "Exp",

+ range = 100, nugget = 1))

> uefitted

model psill range

1 Nug 37259.01 0.0000

2 Exp 52811.94 285.6129

distance

se
m

iv
ar

ia
nc

e

2e+04

4e+04

6e+04

8e+04

200 400 600 800

●

●

●

●

● ●

●
●

●

●

32

176
221

250

267 285

312 354

328

306

Universal kriging

The geostatistical packages, like gstat, use formula objects in
standard ways where possible, which allows for considerable
flexibility, as in this case, where we do really quite well in terms of
LOO CV — and reach the same conclusion as Burrough and
McDonnell about the choice of model:
> UK_fit <- gstat(id = "UK_fit", formula = Zn ~ Fldf, data = BMcD, model = uefitted)

> pe_UK <- gstat.cv(UK_fit, debug.level = 0, random = FALSE)$residual

> round(sqrt(mean(pe_UK^2)), 2)

[1] 225.8

> z <- predict(UK_fit, newdata = BMcD_grid, debug.level = 0)

> BMcD_grid$UK_pred <- z$UK_fit.pred

> BMcD_grid$UK_se <- sqrt(z$UK_fit.var)

Universal kriging predictions

Flood frequency UK model

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 130
130 − 155
155 − 195
195 − 250
250 − 330
330 − 450
450 − 630
630 − 890
890 − 1270
over 1270

Of course, the resolution of the grid
of prediction locations means that
the shift from flood frequency class 1
to the others is too“chunky”, but the
effect of flood water“backin up”
creeks seems to be captured:
> image(BMcD_grid, "UK_pred",

+ breaks = brks, col = cols)

Universal kriging standard errors

Flood frequency UK interpolation standard errors

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

under 240
240 − 250
250 − 260
260 − 270
270 − 280
280 − 290
290 − 300
300 − 350
350 − 400
over 400 The standard errors are also

improved on the ordinary kriging
case:
> image(BMcD_grid, "UK_se", breaks = brks.se,

+ col = cols.se)

Putting it all together

OK_pred

UK_pred

0

200

400

600

800

1000

1200

1400

1600

1800

Using spplot, we can display all the
predictions together, to give a view
of our progress:
> pts <- list("sp.points", BMcD,

+ pch = 4, col = "black",

+ cex = 0.5)

> spplot(BMcD_grid, c("OK_pred",

+ "UK_pred"), at = brks, col.regions = cols,

+ sp.layout = list(pts))

Exporting a completed prediction
We will finally try to export the universal kriging predictions to
GRASS:
> writeRAST6(BMcD_grid, vname = "UK_pred", zcol = "UK_pred", ignore.stderr = TRUE)

> cat(system("r.info UK_pred", intern = TRUE, ignore.stderr = TRUE), sep = "\n")

+--+

| Layer: UK_pred Date: Fri Sep 1 22:37:16 2006 |

| Mapset: rsb Login of Creator: rsb |

| Location: BMcD |

| DataBase: /home/rsb/topics/grassdata |

| Title: (UK_pred) |

| timestamp: none |

|--|

| |

| Type of Map: raster Number of Categories: 255 |

| Data Type: FCELL |

| Rows: 52 |

| Columns: 61 |

| Total Cells: 3172 |

| Projection: sterea (zone 0) |

| N: 332400 S: 330320 Res: 40 |

| E: 181000 W: 178560 Res: 40 |

| Range of data: min = 13.859393 max = 1431.848389 |

| |

| Data Source: |

| |

| |

| |

| Data Description: |

| generated by r.in.bin |

| |

| |

+--+

Conclusion

I There is still a good deal to do to suit the different software
components to one another

I sp classes are being used within R more and more to provide a
shared platform, and packages like rgdal with GDAL/OGR
bindings provide an attractive way of building on community
progress

I spgrass6 provides an interpreted interface between GRASS
and R with R run above GRASS, but R scripts can be
“canned” if need be — see the GRASS book for details

I Finally, initiatives like aRT linking R sp classes and
MySQL/Terralib provide extra possibilities for software
development

	Introduction
	Using the GRASS 6 interface
	Interpolation

