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Abstract 

 

Space syntax techniques were developed by Professor Bill Hillier and colleagues at 
University College London (UCL) in the 1980s to analyze spatial configurations.  Based on the 
theory of graph, space syntax techniques measure the relative connectivity of different spaces in 
the built environment such as a city.  By analyzing the accessibility at local street level, the 
space syntax is able to simulate the likely effects of different street patterns. 

Researches at UCL have implemented the space syntax techniques in various spatial 
analysis software.  Although all those software is available free of charge for academic use, 
none is open source software.  Some even have to run inside a proprietary GIS such as MapInfo 
or ArcView. 

With the advent of GRASS 6 and its much improved vector map processing capabilities, it 
became feasible to implement the space syntax techniques in an open source GIS.  This paper 
describes an experimental implementation of the space syntax techniques in GRASS 6 that 
relies particularly on its vector network analysis modules and scripting capability. 

1 Introduction 

How to analyze the built environment in a systematic manner has long been the subject of 
research in related fields of various scales ranging from interior design through architecture and 
landscape architecture to urban design and planning.  Space syntax is one of the popular 
approaches used by researchers in recent years.  It was first conceived by Bill Hillier, Julienne 
Hanson, and colleagues at The Bartlett, University College London (UCL) in the late 1970s to 
early 1980s [11].  Being a set of theories and techniques for the analysis of spatial 
configurations, space syntax can not only be used as a tool to help architects simulate the likely 
social effects of their designs, but also used in fields where spatial configuration seems to play a 
significant role, such as transportation, archaeology, information technology, urban and human 
geography, and anthropology [2][6]. 

The basic idea behind space syntax is that it identifies the spatial configuration of a study 
area as a network, where nodes represent a unit of “space” and links represent connections 
between units of spaces.  Through this approach we can then treat the analysis of spatial 
configuration as the well-established network analysis problem.  Mathematicians have been 
working on the network analysis problems as early as the 18th century and accordingly 
developed the graph theory, which is now commonly used in computer science and many other 
fields where network analysis problems exist [9].  Therefore terms, concepts, and algorithms of 
graph theory apply to space syntax as well. 
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Researches at UCL have implemented the space syntax techniques in various spatial 
analysis software [7].  There are even more related spatial network analysis software developed 
outside UCL [10].  Although most of those software are available free of charge for academic 
and non-commercial use, none is open source software.  In addition, because of the close 
relationship between space syntax and graphic theory, topology, and geometry, many of those 
software work as add-on or plug-in modules to a popular commercial computer-aided design 
(CAD) or geographic information system (GIS) package to utilize their fundamental capabilities.   
Those CAD or GIS are all proprietary and none is open-sourced. 

However, this is exactly how an open source implementation of the space syntax 
techniques can play a significant role.  Given the capabilities, flexibility, and popularity of 
GRASS [5], it is a no-brainer to choose GRASS as the platform to implement the space syntax 
techniques.  It is even more so after the release of GRASS 6 in 2005, which has much improved 
vector map processing capabilities, including those critical vector-based network analysis 
modules [4].  The following portion of this paper first explains the basic concepts that are 
necessary to implement the space syntax in GRASS 6.  It then describes the actual 
implementation in terms of the GRASS 6 modules and Bash scripts used.  Finally it applies this 
experimental implementation to a real urban environment in order to test its effectiveness. 

2 Basic Concepts 

2.1 Definition of space 

The first step of using space syntax techniques to analyze spatial configuration is to 
identify the “space” in the study area.  In other words, the study area needs to be break down 
into “spatial elements” in order to analyze their configuration.  Here a spatial element means a 
convex empty area enclosed by objects such as wall, column, furniture, or plants in terms of 
architecture or landscape architecture.  Take the floor plan shown in figure 1 for example.  
There are some spatial elements that can be easily identified, such as those rooms, while there 
are some spatial elements that cannot be identified easily, such as the corridor that provides the 
common access to all rooms.  Therefore the originators of space syntax identify the spatial 
elements using the definition of convexity in mathematics and therefore call them convex space 
[3].  In mathematics a convex set means a set of points containing all line segments between 
each pair of points [8].  Convex space is then defined as “an occupiable void where, if imagined 
as a wireframe diagram, no line between two of its points goes outside its perimeter” [11].  If 
the points represent people in a place, a convex space means that the line of sight between any 
two persons will never be blocked by the edge of the space, i.e. all people can see each other.  
For example, those shaded boxes in figure 1 identify the spatial elements in the floor plan. 

The same technique can be used at various scales from the interior of a small building to 
the open spaces in a city.  To analyze the spatial configuration of an urban environment 
comprising of mostly buildings and streets, such as figure 2 shows, however, the way of 
identifying spatial elements can be further adapted.  Although identifying long narrow streets as 
spatial elements works all right as shown in the left side of the figure 2, it is more convenient to 
identify them as axial space, a straight sight-line that also represents a possible path of 
movement [11].  Therefore, in an urban environment consisting of mostly streets, a spatial 
element means a straight section of a street that is visible from one end to the other without 
obstruction.  The right side of the figure 2 shows the axial lines represent the same spatial 
elements identified in the left side. 



W. Wang, H. Liao  3 

 

 
Figure 1 Analysis of spatial configuration 

 
 

  
 
 
 
 

Figure 2 Spatial configurations of urban streets 
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2.2 Connectivity of space 

The second step of using space syntax techniques to analyze spatial configuration is to 
establish the “connectivity” of the spatial elements identified in the first step.  For a study area 
such as the floor plan shown in figure 1, identifying the connections or links among spaces is 
straightforward.  One needs simply look for doors or gates in the floor plan, as the arrows in the 
figure show.  If the study area is in an urban environment, the connections or links among 
spaces locate where the two spaces overlap, or where two axial lines cross, as identified by 
orange circles in the right side of the figure 2. 

After both spatial elements and their connectivity are identified, Hillier [3] suggested using 
a diagram he called the justified graph or simply the j-graph to clearly depict the spatial 
configuration of the study area.  A j-graph is similar to the diagram used in graph theory and 
network analysis that uses points and lines to represent nodes and links, respectively, in a 
network.  For example, if we treat the spaces shown in figure 1 as nodes and the connections 
shown in the same figure as links, a j-graph that represents the spatial configuration of the floor 
plan can be drawn as the one shown in figure 3. 

To depict the spatial configuration of an urban environment in a j-graph, the concept of 
nodes and links may need some adjustment.  Take the study area shown in figure 2 for example.  
Although spatial elements are represented by axial lines in the right side of the figure 2, they 
should be represented by nodes instead, while connections are represented by links as usual.  A 
j-graph that represents the spatial configuration of the urban environment can be drawn as the 
one shown in figure 4.  This is where the j-graph deviates from the diagram of typical network 
analysis such as a road network where axial lines of roads are links and intersections of axial 
lines are nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 A j-graph of the spatial configuration in figure 1 

 

2.3 Depth of space 

A j-graph of the study area reveals two types of information.  First, it shows the hierarchy 
of the spatial elements in terms of “depth” from one particular element.  For example, in figure 
3 the waiting area outside elevators, as represented by node “a,” is set as the entrance of the 
study area and all other spatial elements’ depth from the entrance is clearly depicted. 
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Figure 4 A j-graph of the spatial configuration in figure 2 

 

Secondly the “total depth” of each node, i.e. spatial element, in the j-graph can be 
calculated.  According to Hillier [3], the depth from one node to the other is the sum of the 
number of links in the shortest path between these two nodes.  Take the entrance node “a” in 
figure 1 for example.  The depth from the entrance node to node X is X as listed in table 1.  The 
total depth of a node is simply the sum of the depths to all other nodes.  In figure 3 the number 
next to each node is their total depth. 

This is the second point where the use of j-graph deviates from a typical diagram for 
network analysis.  In a regular network the length or travel cost of a link is usually important, in 
space syntax however, the link is only used to identify connectivity between spatial elements.  
Thus the lengths or travel costs of links, which is called “depth” in space syntax, are all treated 
the same and set to 1 (unity). 

Empirical studies have shown that in a study area a spatial element having a lower total 
depth means it is easier to navigate [2][3].  If we color the spatial elements in figure 2 according 
to their total depth, as shown in figure 8 and 10, we can easily discern how easily navigable a 
spatial element is.  Hillier and others further found that easy navigability is not only useful for 
settings where way-finding is a significant issue, such as the design of museums, airports, and 
hospitals, but also applicable to predict the correlation between spatial layouts and social effects 
such as crime, traffic flow, sales per unit area, etc [11].  For example, we can infer from figure 8 
and 10 that where one is most likely to meet and interact with other people in that study area.  
Such a map of total depth shows the value of space syntax and explains why space syntax has 
been a popular approach in analyzing built environment since its inception. 
 

Table 1 Total depth calculation of the spatial configuration in figure 1 

 a b c d e f g h i Sum 
a 0 1 1 2 2 2 3 2 2 15 
b 1 0 1 2 2 2 3 2 2 15 
c 1 1 0 1 1 1 2 1 1 9 
d 2 2 1 0 1 2 3 2 2 15 
e 2 2 1 1 0 2 3 2 2 15 
f 2 2 1 2 2 0 1 2 2 14 
g 3 3 2 3 3 1 0 3 3 21 
h 2 2 1 2 2 2 3 0 2 16 
i 2 2 1 2 2 2 3 2 0 16 

Sum 15 15 9 15 15 14 21 16 16 136 
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3 Implementation 

3.1 The algorithm 

In short, the ability of space syntax to measure the relative connectivity of different spatial 
elements in a study area is through the calculation of total depth for each element.  The steps to 
calculate and analyze the total depth of spatial elements in a study area is listed as follows. 

1. Identify spatial elements in a study area and draw them as nodes. 
2. Identify connections between spatial elements and draw them as links. 
3. From the finished graph of network, which is called “justified graph,” or j-graph, find 

all shortest paths between each pair of nodes. 
4. The depth of a node to another node is the distance of the shortest path between them, 

which is also the sum of the number of individual links within the path because all 
links’ distances are set to 1. 

5. The total depth of a node, i.e. spatial element, is the sum of its depths to all other nodes. 
6. Inscribe the total depth of each node to the network, i.e. the j-graph.  Present the j-

graph in a thematic manner such as graduated colors or symbols. 
7. Those spatial elements that have lower values of total depths mean they have higher 

potential to be used by pedestrian because of higher accessibility. 

3.2 A GRASS approach 

Although the algorithm listed above is not complicated, when performed manually it will 
be quite tedious and quickly become insurmountable as the number of spatial elements increase.  
Therefore it is necessary to have a computerized solution to carry out the calculation of the total 
depths in order to use space syntax practically.  As mentioned before, there have been many 
solutions for this purpose.  What this study does is not simply to reinvent the wheel but to 
develop a solution under an open-source framework so that all benefits of open-source software 
apply. 

Given the aforementioned algorithm and the capabilities provided by GRASS 6, this study 
implements a computerized space syntax solution in the form of a standard operation procedure 
(SOP) to be carried out in GRASS 6.  Since it is a prototype, it is not yet a fully automated 
solution and requires quite a few manual operations.  However it does perform similarly to 
another solution based on ArcView, a popular proprietary GIS system, described by Batty [1].  
The following text describes what GRASS 6 commands and/or Bash scripts should be 
performed in each step of the above algorithm. 

3.2.1 The 1st step of the aforementioned algorithm can be executed using the 
following GRASS 6 commands. 
r.in.gdal basemap_image out=basemap (1) 

v.digit -n axial_line bgcmd="d.rgb red=basemap.red 
green=basemap.green blue=basemap.blue" (2) 

v.category axial_line option=report (3) 

v.category axial_line out=axial_line_tmp option=del (4) 

g.remove vect=axial_line (5) 

v.category axial_line_tmp out=axial_line option=add (6) 

v.db.droptable axial_line (7) 

v.db.addtable axial_line columns="depth_sum int" (8) 
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v.category axial_line option=report (9) 

g.remove vect= axial_line_tmp (10) 

3.2.2 The 2nd step of the aforementioned algorithm can be executed using the 
following GRASS 6 commands. 
v.clean axial_line out=axial_line_tmp error=intersection 

tool=break (11) 

v.category axial_line_tmp option=report (12) 

v.digit -n j-graph bgcmd="d.vect -c axial_line display=shape,cat; 
d.vect interaction icon=basic/circle" (13) 

v.category j-graph option=report (14) 

v.category j-graph out=j-graph_tmp option=del (15) 

g.remove vect= j-graph (16) 

v.category j-graph_tmp out=j-graph option=add (17) 

v.db.droptable j-graph (18) 

v.db.addtable j-graph (19) 

v.category j-graph option=report (20) 

g.remove vect= j-graph_tmp (21) 

3.2.3 The 3rd step of the aforementioned algorithm can be executed using the 
following GRASS 6 commands and Bash scripts that utilize some UNIX 
tools. 
v.net -c j-graph out=j-graph_net (22) 

v.out.ascii j-graph_net format=standard > j-graph_net.txt (23) 

d.erase  (24) 

d.vect j-graph_net display=shape,cat (25) 

d.vect j-graph_net layer=2 display=shape,cat icon=basic/circle 
color=blue llayer=2 lcolor=blue (26) 

v.db.addtable j-graph_net table=j-graph_pt layer=2 
columns="depth_sum int" (27) 

v.db.addcol j-graph_net columns="arc_cost int" (28) 

v.db.update j-graph_net column=arc_cost value=1 (29) 

v.category j-graph_net option=report (30) 

limit=`v.category axial_line option=report | awk '/line/ {print 
$2}'` (31) 

limit=$1  (32) 

rm wuri_points.txt (33) 

count=0  (34) 

i=1    (35) 

while [ $i -le $limit ] (36) 

do    (37) 

 j=`expr $i + 1` (38) 
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 while [ $j -le $limit ] (39) 

 do   (40) 

  count=`expr $count + 1` (41) 

  echo "$count $i $j" >> node_pairs.txt (42) 

  echo "$count $i $j" (43) 

  j=`expr $j + 1` (44) 

 done  (45) 

 i=`expr $i + 1` (46) 

done   (47) 

cat node_pairs.txt | v.net.path -s j-graph_net out=short_path 
afcol=arc_cost (48) 

v.db.select short_path > short_path_tab.txt (49) 

3.2.4 The 4th and 5th steps of the aforementioned algorithm can be executed 
using the following GRASS 6 commands and Bash scripts that utilize some 
UNIX tools. 
i=1    (50) 

while [ $i -le $limit ] (51) 

do    (52) 

 sum=`v.db.select short_path | awk ' (53) 

  BEGIN { FS = "|" } (54) 

  {if (($3 == point) || ($4 == point)) {s = s + $6}} (55) 

  END {print s}' point=$i` (56) 

 v.db.update j-graph_net layer=2 column=depth_sum value=$sum 
where="cat=$i" (57) 

 v.db.update axial_line column=depth_sum value=$sum 
where="cat=$i" (58) 

 echo "Line $i depth sum = $sum" (59) 

 i=`expr $i + 1` (60) 

done (60) 

v.db.select j-graph_net layer=2 > j-graph_pt_tab.txt (61) 

v.db.select axial_line > axial_line_tab.txt (62) 

3.2.5 The 6th and 7th steps of the aforementioned algorithm can be executed 
using the following GRASS 6 commands. 
d.vect.thematic -l axial_line type=line column=depth_sum 

themetype=graduated_lines size=11 maxsize=3 nint=5 (63) 

d.vect.thematic -l axial_line type=line column=depth_sum nint=5 
colorscheme=red-blue (64) 
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4 Verification 

4.1 The site 

In order to test the effectiveness of the standard operation procedure described in the 
previous section, this study applies this experimental implementation to the same chosen study 
area but with two different street configurations, which are before and after the development of 
a high-speed railway station.  Figure 5 shows a recent satellite imagery of the study area that has 
been developed according to the special district plan of the Wu-ri high-speed railway station, 
while figure 6 shows the old street map of the same study area before developed. 

 
Figure 5 A satellite imagery of the study area (©http://www.urmap.com) 

 
Figure 6 An old street map of the study area (©http://www.urmap.com) 
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4.2 Results 

Figure 7 through 11 show the results of calculating total depth of the two different street 
configurations of the same study area using the SOP described in session 3. 

 
Figure 7 Identified axial lines of the old street configuration in random colors 

 

 
Figure 8 A thematic map of the total depth of the old street configuration 
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Figure 9 Identified axial lines of the new street configuration in random colors 

 

 
Figure 10 A thematic map of the total depth of the new street configuration 



12  Implementing the Space Syntax Techniques 

 

 
Figure 11 Comparison of the total depth between old and new configurations 

4.3 Discussion 

The verification process shows that the implementation does work as expected.  However, 
the bottleneck of running the calculation turns out to be the Bash script that calculates all 
possible combinations of the origin and destination pairs.  The v.net.path command operation 
that is originally thought to be both resource-demanding and time-consuming runs surprisingly 
quick and efficient. 

The biggest issue of the current implementation is that digitizing the axial lines as well as 
the j-graph is a tedious work and prone to error.  Thus more automation is highly desirable.  
Some key functionalities necessary for further automation, nonetheless, are not yet available as 
vector commands as of GRASS version 6.1.  This makes a more automated implementation of 
space syntax must be in the form of a custom programmed GRASSS module written in a lower-
level programming language such as C.  But again, suitable application programming interface 
(API) for doing this does not seem to be easily accessible in GRASS 6.1.  Besides, due to the 
current limitation, it would also be nice to have the thematic vector display command be further 
refined. 

5 Conclusion 

In summary, space syntax is a popular tool for spatial configuration analysis.  A robust 
implementation of space syntax techniques in GRASS could be both a proof of its capabilities 
and a boost for its adoption.  However, it is not yet straightforward to do so.  Although this 
study has shown that a proof-of-concept implementation of space syntax in GRASS 6 is feasible, 
automating the process of creating the j-graph should be implemented as soon as possible if it 
would really be put to use in a real world situation.  In the long run, a refined implementation 
that can automate the process of identifying the axial lines will surely be a well-received 
improvement. 
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