
Using R with FOSS4G, in particular with GRASS:
Accessing spatial data

Roger Bivand

Norges Handelshøyskole
Bergen, Norway;

Roger.Bivand@nhh.no; Roger.Bivand@R-project.org

14:35 — 15:05, 12 September 2006

mailto:Roger.Bivand@nhh.no
mailto:Roger.Bivand@R-project.org

Introduction

I Having described how spatial data may be represented in R,
we need to move on to accessing user data

I There are quite a number of packages handling and analysing
spatial data on CRAN, and others off-CRAN, and their data
objects can be converted to or from sp object form

I We need to cover how coordinate reference systems are
handled, because they are the foundation for spatial data
integration

I Both here, and in relation to reading and writing various file
formats, things have advanced a good deal since the R News
note in late 2005

Creating objects within R

I sp includes contourLines2SLDF() to convert contour lines to
SpatialLinesDataFrame objects — may move to maptools

I spmaps on Sourceforge allows lines or polygons from maps to be
used as sp objects

I spPBS on Sourceforge exports sp objects to PBSmapping

I spgpc on Sourceforge uses gpclib to check polygon topology and to
dissolve polygons

I spspatstat on Sourceforge converts some sp objects for use in
spatstat

I Rgshhs on Sourceforge reads GSHHS high-resolution shoreline data
into SpatialPolygon objects

http://r-spatial.sourceforge.net/
http://r-spatial.sourceforge.net/
http://r-spatial.sourceforge.net/
http://r-spatial.sourceforge.net/
http://r-spatial.sourceforge.net/

Using maps data: Illinois counties

93°°W 92°°W 91°°W 90°°W 89°°W 88°°W 87°°W 86°°W

37
°°N

38
°°N

39
°°N

40
°°N

41
°°N

42
°°N There are number of valuable

geographical databases in map
format that can be accessed directly
— beware of IDs!
> if (!require(spmaps)) {

+ rSpatial <- "http://r-spatial.sourceforge.net/R"

+ install.packages("spmaps",

+ repos = rSpatial)

+ library(spmaps)

+ }

> ill <- map("county", regions = "illinois",

+ plot = FALSE, fill = TRUE)

> IDs <- sub("^illinois,", "",

+ ill$names)

> ill_sp <- map2SpatialPolygons(ill,

+ IDs, CRS("+proj=longlat"))

> plot(ill_sp, axes = TRUE)

Coordinate reference systems

I Coordinate reference systems (CRS) are at the heart of
geodetics and cartography: how to represent a bumpy ellipsoid
on the plane

I We can speak of geographical CRS expressed in degrees and
associated with an ellipse, a prime meridian and a datum, and
projected CRS expressed in a measure of length, and a chosen
position on the earth, as well as the underlying ellipse, prime
meridian and datum.

I Most countries have multiple CRS, and where they meet there
is usually a big mess — this led to the collection by the
European Petroleum Survey Group (EPSG, now Oil & Gas
Producers (OGP) Surveying & Positioning Committee) of a
geodetic parameter dataset

http://www.epsg.org/

Coordinate reference systems

I The EPSG list among other sources is used in the workhorse
PROJ.4 library, which as implemented by Frank Warmerdam
handles transformation of spatial positions between different
CRS

I This library is interfaced with R in the rgdal package, and the
CRS class is defined partly in sp, partly in rgdal

I A CRS object is defined as a character NA string or a valid
PROJ.4 CRS definition

I The validity of the definition can only be checked if rgdal is
loaded

http://www.remotesensing.org/proj/

Here: neither here nor there

> IJ.east <- 4.516666667

> IJ.north <- 52.46666667

> WGS84 <- CRS("+proj=longlat +datum=WGS84")

> IJ.WGS84 <- SpatialPoints(cbind(x = IJ.east,

+ y = IJ.north), WGS84)

> library(rgdal)

> EPSG <- make_EPSG()

> EPSG[grep("^# ED50$", EPSG$note),

+ 1:2]

code note

146 4230 # ED50

> ED50 <- CRS(paste("+init=epsg:4230",

+ "+towgs84=-87,-98,-121,0,0,0,0"))

> res <- spTransform(IJ.WGS84,

+ ED50)

> coordinates(res)

x y

[1,] 4.518003 52.46745

> spDistsN1(coordinates(res),

+ coordinates(IJ.WGS84), longlat = TRUE)

[1] 0.1258653

In a Dutch navigation example, a GPS

measurement in WGS84 datum right in

front of the jetties of IJmuiden has to be

plotted on a chart in the ED50 datum, both

in geographical CRS. Using the spTransform

method makes the conversion, using EPSG

and external information to set up the

ED50 CRS. The difference is about 125m;

lots of details about CRS in general can be

found in Grids & Datums.

http://www.hydro.nl/articles/artikel2_en.htm
http://lists.maptools.org/pipermail/proj/2003-May/000771.html
http://www.asprs.org/resources/GRIDS/

Meuse bank CRS

Let’s have a look at the Meuse bank CRS — Grids & Datums gives
some hints in February 2003 to search for Amersfoort in EPSG:
> EPSG[grep("Amersfoort", EPSG$note), 1:2]

code note

205 4289 # Amersfoort

2031 28991 # Amersfoort / RD Old

2032 28992 # Amersfoort / RD New

> RD_New <- CRS("+init=epsg:28992")

> res <- CRSargs(RD_New)

> cat(strwrap(res), sep = "\n")

+init=epsg:28992 +proj=stere +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.999908

+x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs

> res <- showWKT(CRSargs(RD_New), morphToESRI = TRUE)

> cat(strwrap(gsub(",", ", ", res)), sep = "\n")

PROJCS["Amersfoort / RD New", GEOGCS["Amersfoort", DATUM["D_Amersfoort",

SPHEROID["Bessel_1841", 6377397.155, 299.1528128]], PRIMEM["Greenwich", 0],

UNIT["Degree", 0.017453292519943295]], PROJECTION["Oblique_Stereographic"],

PARAMETER["latitude_of_origin", 52.15616055555555], PARAMETER["central_meridian",

5.38763888888889], PARAMETER["scale_factor", 0.9999079], PARAMETER["false_easting",

155000], PARAMETER["false_northing", 463000], UNIT["Meter", 1]]

http://www.asprs.org/resources/GRIDS/

CRS are muddled

I If you think CRS are muddled, you are right, like time zones
and daylight saving time in at least two dimensions

I But they are the key to ensuring positional interoperability,
and“mashups”— data integration using spatial position as an
index must be able to rely on data CRS for integration
integrity

I The situation is worse than TZ/DST because there are lots of
old maps around, with potentially valuable data; finding
correct CRS values takes time

I On the other hand, old maps and odd choices of CRS origins
can have their charm . . .

Reading vectors

I GIS vector data are points, lines, polygons, and fit the
equivalent sp classes

I There are a number of commonly used file formats, all or
most proprietary, and some newer ones which are partly open

I GIS are also handing off more and more data storage to
DBMS, and some of these now support spatial data formats

I Vector formats can also be converted outside R to formats
that are easier to read

Reading vectors

I GIS vector data can be either topological or spaghetti —
legacy GIS was topological, desktop GIS spaghetti

I sp classes are not bad spaghetti, but no checking of lines or
polygons is done for errant topology

I A topological representation in principal only stores each point
once, and builds arcs (lines between nodes) from points,
polygons from arcs — GRASS 6 has a nice topological model

I Only RArcInfo tries to keep some traces of topology in
importing legacy ESRI ArcInfo binary vector data (or e00
format data) — maps uses topology because that was how
things were done then

Reading shapefiles

I The ESRI ArcView and now ArcGIS standard(ish) format for
vector data is the shapefile, with at least a DBF file of data,
an SHP file of shapes, and an SHX file of indices to the
shapes; an optional PRJ file is the CRS

I Many shapefiles in the wild do not meet the ESRI standard
specification, so hacks are unavoidable unless a full topology is
built

I Both maptools (using shapelib) and shapefiles (interpreted
R code) contain functions for reading and writing shapefiles;
they cannot read the PRJ file, but do not depend on external
libraries

I There are many valid types of shapefile, but they sometimes
occur in strange contexts — only some can be happily
represented in R so far

Reading shapefiles: maptools

> library(maptools)

> list.files("shapes")

[1] "scot_BNG.dbf" "scot_BNG.prj"

[3] "scot_BNG.shp" "scot_BNG.shx"

> getinfo.shape("shapes/scot_BNG.shp")

Shapefile type: Polygon, (5), # of Shapes: 56

> scot <- readShapePoly("shapes/scot_BNG.shp")

There are readShapePoly, readShapeLines,

and readShapePoints functions in the

maptools package, and in practice they now

handle a number of infelicities. They do

not, however, read the CRS, which can

either be set as an argument, or updated

later with the proj4string method

Reading vectors: rgdal

> ogrDrivers()

[1] "ESRI Shapefile"

[2] "MapInfo File"

[3] "UK .NTF"

[4] "SDTS"

[5] "TIGER"

[6] "S57"

[7] "DGN"

[8] "VRT"

[9] "AVCBin"

[10] "REC"

[11] "Memory"

[12] "CSV"

[13] "GML"

[14] "ODBC"

[15] "PostgreSQL"

> scot1 <- readOGR(dsn = "shapes",

+ layer = "scot_BNG")

OGR data source with driver: ESRI Shapefile

Source: "shapes", layer: "scot_BNG"

with 56 rows and 13 columns

> cat(strwrap(proj4string(scot1)),

+ sep = "\n")

+proj=tmerc +lat_0=49 +lon_0=-2

+k=0.999601 +x_0=400000

+y_0=-100000 +ellps=airy

+units=m +no_defs

Using the OGR vector part of the

Geospatial Data Abstraction Library lets us

read shapefiles like other formats for which

drivers are available. It also supports the

handling of CRS directly, so that if the

imported data have a specification, it will

be read. OGR formats differ from platform

to platform — the next release of rgdal will

include a function to list available formats.

Use FWTools to convert between formats.

http://fwtools.maptools.org/

Reading rasters

I There are very many raster and image formats; some allow
only one band of data, others think data bands are RGB,
while yet others are flexible

I There is a simple readAsciiGrid function in maptools that
reads ESRI Arc ASCII grids into SpatialGridDataFrame
objects; it does not handle CRS and has a single band

I Much more support is available in rgdal in the readGDAL

function, which — like readOGR — finds a usable driver if
available and proceeds from there

I Using arguments to readGDAL, subregions or bands may be
selected, which helps handle large rasters

Reading rasters: rgdal

> getGDALDriverNames()

[1] "VRT" "GTiff" "NITF" "HFA" "SAR_CEOS" "CEOS" "ELAS" "AIG"

[9] "AAIGrid" "SDTS" "DTED" "PNG" "JPEG" "MEM" "JDEM" "GIF"

[17] "ESAT" "BSB" "XPM" "BMP" "AirSAR" "RS2" "PCIDSK" "PCRaster"

[25] "ILWIS" "RIK" "SGI" "Leveller" "PNM" "DOQ1" "DOQ2" "ENVI"

[33] "EHdr" "PAux" "MFF" "MFF2" "FujiBAS" "GSC" "FAST" "BT"

[41] "LAN" "CPG" "IDA" "NDF" "DIPEx" "ISIS2" "L1B" "FIT"

[49] "RMF" "RST" "USGSDEM" "GXF"

> list.files("pix")

[1] "SP27GTIF.TIF"

> SP27GTIF <- readGDAL("pix/SP27GTIF.TIF")

pix/SP27GTIF.TIF has GDAL driver GTiff

and has 929 rows and 699 columns

Closing GDAL dataset handle 0x9b25b08... destroyed ... done.

Reading rasters: rgdal

This is a single band GeoTiff, mostly
showing downtown Chicago; a lot of data is
available in geotiff format from US public
agencies, including Shuttle radar
topography mission seamless data
> image(SP27GTIF, col = grey(1:99/100),

+ axes = TRUE)

http://srtm.usgs.gov/
http://srtm.usgs.gov/

Reading rasters: rgdal

> summary(SP27GTIF)

Object of class SpatialGridDataFrame

Coordinates:

min max

x 681480 704407.2

y 1882579 1913050.0

Is projected: TRUE

proj4string : [+proj=tmerc +lat_0=36.66666666666666 +lon_0=-88.33333333333333 +k=0.999975 +x_0=152400.3048006096 +y_0=0 +ellps=clrk66 +datum=NAD27 +to_meter=0.3048006096012192 +no_defs]

Number of points: 2

Grid attributes:

cellcentre.offset cellsize

x 681496.4 32.8

y 1882595.2 32.8

cells.dim

x 699

y 929

Data attributes:

band1

Min. : 4.0

1st Qu.: 78.0

Median :104.0

Mean :115.1

3rd Qu.:152.0

Max. :255.0

Writing objects

I In maptools, there are functions for writing sp objects to
shapefiles — writePolyShape, writeLinesShape,
writePointsShape, and as Arc ASCII grids —
writeAsciiGrid, but no CRS support

I In rgdal, writeGDAL can write for example multi-band
GeoTiffs, but there are fewer write than read drivers; in
general CRS and geogreferencing are supported

I The rgdal function showWKT can be used to write a PRJ file to
accompany output shapefiles

I External software (including different versions) tolerate output
objects in varying degrees, quite often needing tricks - see
mailing list archives

GIS interfaces

I GIS interfaces can be as simple as just reading and writing files —
loose coupling, once the file formats have been worked out, that is

I Loose coupling is less of a burden than it was with smaller, slower
machines, which is why the GRASS 5 interface was tight-coupled,
with R functions reading from and writing to the GRASS database
directly

I The GRASS 6 interface spgrass6 also runs R within GRASS, but
uses intermediate temporary files; the package is now on CRAN, and
depends on sp, maptools, and rgdal

I The aRT package provides an advanced modular interface to
Terralib, and is definitely“New Generation”: modern GIS, DBMS,
and R as middleware; aRT is well-documented on its homepage,
and is on the LiveCD

http://www.est.ufpr.br/aRT/

	Introduction
	Coordinates

	Reading vectors
	Reading shapefiles

	Reading rasters
	Writing objects
	GIS interfaces

